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Abstract

We study the determinants of cost pass-through in differentiated product markets. Random

utility models of demand, such as mixed logit, are attractive for the limited restrictions placed

on customer substitution patterns. We show that the shape of the distributions of the underlying

customer preferences similarly determines cost pass-through. However, common functional form

assumptions for these distributions lead to biased estimates of both pass-through and substitu-

tion. We offer a flexible, parsimonious unit-demand specification capable of accommodating

both log-concave demands (incomplete pass-through) and log-convex demands (over-shifted

pass-through) up to that of CES demand. Using data from ready-to-eat cereal, our specifi-

cation matches consumption patterns across different income levels, and the estimates reject

the common practice of modeling preferences as linear or log-linear in customer demographics.

Such misspecification has substantive implications: welfare gains to uniform pricing are three

to nine times greater than under the more restrictive specifications.
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1 Introduction

Demand curvature, through its impact on cost pass-through, drives the conclusions to many sub-

stantive questions in industrial organization (IO), including the ability of digital platforms such as

Amazon.com to affect the division of surplus between third-party sellers and consumers (Gutierrez,

2022), the welfare implications of uniform pricing observed in settings ranging from consumer

packaged goods (DellaVigna and Gentzkow, 2019) to consumer financial products (Cuesta and

Sepúlveda, 2021), or the predicted price effects of horizontal mergers that generate cost efficiencies.1

Demand curvature is also central to the incidence of taxes and exchange rates in non-competitive

industries (Weyl and Fabinger, 2013) and to the role of regulation in controlling externalities (Fabra

and Reguant, 2014; Miller, Osborne and Sheu, 2017).

These examples highlight the value to a flexible demand specification to prevent functional

form assumptions from impacting curvature predictions. Bulow and Pfleiderer (1983) underscore

this point by illustrating how the specification of demand can skew statistical tests assessing the

presence of market power in the context of the tobacco industry. Likewise, Froeb, Tschantz and

Werden (2005) find that the predicted pass-through rates of cost efficiencies in the WorldCom–

Sprint merger are seven times greater when employing a constant elasticity of substitution (CES )

demand system compared to a linear demand system.

We focus on discrete-choice demand models and examine the connection between preference

specification and the set of feasible substitution and pass-through combinations accommodated by

the demand model. The mixed-logit (ML) model, in particular, can capture realistic substitution

patterns across heterogeneous consumers. This flexibility is key to measuring the closeness of

competition between products, predicting diversion in response to a merger-induced price change,

or identifying collusion among firms. However, understanding the determinants of pass-through

(demand curvature) in discrete choice models is less developed, as is the interaction between

substitution and pass-through. Berry and Haile (2021), for example, state:

...[S]ubstitution patterns drive answers to many questions of interest—e.g., the sizes of markups

or outcomes under a counterfactual merger. However, other kinds of counterfactuals can require

flexibility in other dimensions. For example, “pass-through” (e.g., of a tariff, tax, or technolog-

ically driven reduction in marginal cost) depends critically on second derivatives of demand. It

is not clear that a mixed-logit model is very flexible in this dimension.

We aim to highlight the implications of modeling choices for representing consumer pref-

erence heterogeneity in answering questions such as: When do assumptions on preference hetero-

geneity restrict feasible curvature estimates and hence pass-through? How can we model preference

heterogeneity flexibly to simultaneously allow for the estimation of realistic demand substitution

(elasticity) and pass-through (curvature)?

1 Such price effects depend on the concavity of the profit function and thus demand curvature. Jaffe and Weyl (2013)
suggest that for small merger-induced price increases, observed pass-through rates allow inference of the concavity
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Figure 1: Breakfast Cereal: Elasticity and Curvature Estimates

A: Multinomial Logit B: Full Model
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B: Multinomial Logit
Estimates
Avg. Curvature (0.98)
Avg. Elasticity (3.71)
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A: Full Model
Estimates
Avg. Curvature (1.06)
Avg. Elasticity (3.62)

Figure Notes: Black dots represent the estimated own-price elasticity and curvature for a sample product. The gray dot
corresponds to the average elasticity and curvature.

A Motivating Example. We begin by illustrating the consequences of preference heterogeneity

on elasticity and demand curvature estimates using the well-known simulated ready-to-eat cereal

data from Nevo (2000). We focus on elasticity and curvature pairs as descriptive statistics for the

shape of demand. While using (own-price) elasticity as a simple measure of substitution will likely

be familiar to the reader, demand curvature as a simple measure of cost pass-through is likely new.

In Section 2, we formally define demand curvature and its connection to cost pass-through. For

now, it is sufficient for the reader to think of curvature and pass-through as equivalent; i.e., if a

product’s estimated demand curvature is 0.9, the model predicts the firm will increase price 90

cents when marginal cost increases by one dollar.

In Figure 1, Panel A we present estimation results for a simple multinomial logit (MNL)

model of cereal demand that represents preferences as a common linear function of cereal attributes

and price. Each dot represents the estimated own-price elasticity (ε) and curvature (ρ) pair of a

single product evaluated at observed prices. We find that estimated product demands are elastic

and that estimated curvature is less than – and truncated at – one.

In Panel B, we present the results for the same data using Nevo’s (2000) mixed-logit

(ML) specification which adds normally distributed heterogeneity in both price sensitivity and

valuation of product attributes to the MNL model.2 We observe that estimated demand curvatures

in the ML model exceed one for the majority of the products, which indicates that demand is

“overshifted”: a one-dollar increase in cost results in more than a one-dollar increase in price for

these products. While the two specifications deliver similar average elasticities – a statistic often

reported by researchers in the literature – the MNL model predicts near complete pass-through

of profit. For large price changes, Miller, Remer, Ryan and Sheu (2015) suggest conducting a merger simulation
with a demand system constrained to mimic observed pass-through.

2 We estimate each model using Nevo’s (2000) original set of Hausman-style price instruments. We also considered
other demand specifications that rely on only an idiosyncratic price random coefficient or on only price-demographic
interactions to represent heterogeneity in price sensitivity. The full description of the different specifications and
the relevant estimates are reported in Appendix A.
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for the modal product, as in perfectly competitive settings. As the ML model nests the MNL

model, this points to the importance of preference heterogeneity in generating these discrepancies.

Moreover, as demand curvature plays a key role in determining firm price responses to a change

in marginal cost in settings with market power (Cournot, 1838;Weyl and Fabinger, 2013), this

example suggests that careful modeling of preference heterogeneity and the shape of demand is an

important ingredient in building a model that delivers robust empirical predictions.

Contributions. Our goal in this paper is to identify the sources for the differences between Panels

A and B. We empirically assess the extent to which these differences matter and aim to guide

researchers about when and how to include flexibility in their models. As the discrete choice model

is a workhorse in empirical work, adding such flexibility in a tractable way is useful in addressing a

wide variety of important questions in academic and policy settings. We make several theoretical

and empirical contributions toward achieving this objective.

First, we identify how different components of customer preferences influence the shape

of mixed-logit demand. We do so by adopting the “demand manifold” approach of Mrázová and

Neary (2017) and focusing on the set of achievable demand elasticity and curvature pairs as sufficient

statistics for the shape of demand.3 We show that the shape of the mixing distribution in ML –

how the researcher models preference heterogeneity – determines the set of achievable elasticity-

curvature pairs and therefore the shape of demand. Using a simple single-product monopoly model,

we show that curvature of demand is the outcome of a tug-of-war between heterogeneity of consumer

preference over product attributes and heterogeneity in price sensitivity:

• When consumers have heterogeneous tastes over product attributes, demand curvature, and

pass-through decreases at all prices relative to that of the simple MNL model. Thus, pass-

through remains at most complete by incorporating heterogeneity in tastes for product

attributes. This result builds on Caplin and Nalebuff (1991b), who show that a MNL model

with heterogeneous valuations of product attributes preserves the curvature properties of the

MNL model. Intuitively, while consumers have heterogeneous tastes over characteristics, their

demand response to a change in price is uniform, which leads a firm with market power to

absorb some changes in marginal cost.

• Incorporating heterogeneity in price sensitivity enables demand to become over-shifted. Here,

the shape of the price mixing distribution plays a vital role. Idiosyncratic price respon-

siveness thus accommodates but does not impose, more than complete pass-through. We

consider three ways of specifying idiosyncratic price responsiveness – distributional assump-

tions for unobserved heterogeneity in price sensitivity, observable consumer heterogeneity via

demographic-price interactions, and heterogeneity in income effects.

3 While Mrázová and Neary (2017) address the behavior of elasticity and curvature for different continuous demand
systems (e.g., CES , Pollak, translog) in a single-product monopoly model, we instead evaluate how components
of mixed logit demand influence the relationship between elasticity and curvature in a discrete choice framework
suitable for differentiated products oligopoly models.
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We demonstrate that depicting estimated product-level demand in elasticity-curvature space

for empirical applications – as in the motivating example above – is useful in visualizing this

tug-of-war. It also amounts to a useful presentation of heterogeneous estimated demands and

provides insight into possible restrictions imposed by the researcher’s preference specification on

the shape of demand (e.g., Figure 1, Panel A).

Our second contribution is connecting ML demand with CES demand – the dominant

framework in the macro and international trade literature. Here, we demonstrate that discrete

choice not only nests CES in the case of continuous demand (Anderson, de Palma and Thisse, 1992)

but also in the case of the unit-demand discrete choice models commonly used in the Industrial

Organization literature. Where CES and ML differ, however, is in equilibrium pass-through under

oligopoly. Since its curvature exceeds one, CES demand implies a pass-through that is always over-

shifted, and this pass-through does not vary with the number of competitors. In contrast, we show

that for such curvatures, competition reduces pass-through relative to the single-product monopoly

case in ML models. Hence, while the ML framework provides a natural and intuitive foundation for

CES demand and may generate identical estimates of demand elasticity and curvature, the CES

model predicts larger counterfactual price responses to cost changes.

Our third contribution is to highlight the key modeling choices of the mixing distributions

governing preference for price and product characteristics.4 Researchers often impose shape restric-

tions on these mixing distributions ex-ante. We offer an easy and parsimonious way of modulating

how correlates of demand heterogeneity, such as consumer demographics, interact with product

characteristics and price to increase the range of feasible elasticity and demand curvature pairs. A

nice feature of our approach is that it nests a ML model with standard distributional assumptions

and that parameters can be recovered using a generalized method of moments estimator. Iden-

tification derives from data moments that trace price responses and consumption patterns across

distributions of customer demographics. We also provide guidance to the researcher by showing

how to identify ex-ante whether and where to provide additional flexibility in specifying preferences.

Finally, we show that adding flexibility in estimating the shape of demand matters for

empirical work. We do so by evaluating the welfare implications of uniform pricing. This is a natural

setting since we know the welfare effects of uniform pricing (or equivalently third-degree price

discrimination) depend on differences in demand curvature across markets (Aguirre, Cowan and

4 Assuming a one-tailed distribution for price random coefficients, for example, not only ensures that the demand
of all simulated consumers is downward sloping (Train, 2009), but also expands the support of feasible demand
curvatures for each possible elasticity estimate. The literature has recognized that how the demographic attributes
of consumers enter the empirical specification of price sensitivity plays an important role in generating economically
meaningful consumer responses to price. For example, Nevo (1998) comments that the estimated price sensitivity
distribution is “achieved mainly by freeing the restrictive linear form in which log income influenced the price
coefficient; once we allow for log income to enter in a non-linear fashion, by introducing a quadratic term, we
achieve a reasonable distribution of price sensitivity.”
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Vickers, 2010). The distributional consequences of uniform pricing have also received considerable

policy attention.5

Using scanner and individual-level data for ready-to-eat cereals, we show that our flexible

preference specification generates product demand curves which differ substantially from standard

distributional assumptions used in the literature; i.e., interactions with income and log-income.

An important feature of this exercise is that our preferred flexible specification nests – and the

estimated model enables us to reject – these standard distributional assumptions. We find that

standard distributional assumptions imply significantly larger substitution to other cereals and less

diversion to the outside good because the estimator relies on unobserved heterogeneity to match

better the identifying micro-moments. Our flexible model generates demand curves with greater

curvature and pass-through than the model restricted to using standard distributional assumptions.

Regarding welfare, models restricted to standard distributional assumptions predict welfare

effects of uniform pricing between one-tenth and one-third lower than our preferred flexible spec-

ification. We also find significant differences in the distributional implications of uniform pricing.

While high-income consumers are beneficiaries of uniform pricing in general, these models imply

estimated welfare gains between one-quarter and one-half the flexible specification.

We conclude from this exercise that providing the flexibility we suggest is of first-order

importance for empirical work to keep a healthy distance between assumptions and results. More-

over, we caution the reader from concluding that estimating demand flexibly simply amounts

to including non-linear interactions of income, or even focusing on income as the key source of

preference heterogeneity. Our point is more general, as we demonstrate that demand curvature (cost

pass-through) is determined by the shape of the distributions that define customer preferences, be

these connected to observable demographics or unobservable random taste variation. This flexibility

is thus a function of what the data can identify.

Alternative Approaches. Our focus in this paper is to address the role of distributional as-

sumptions in determining the shape of discrete choice demand. Our work complements Compiani

(2022) who also focuses on estimating demand flexibly but uses a non-parametric approach. This

attractive solution places even fewer restrictions on the shape of demand than our environment.

This flexibility requires a great deal of data variation and computational power, however, and limits

the approach empirically to rare settings where markets contain at most a handful of products. Our

work suggests a tractable approach to modeling demand flexibly for various empirical settings.

Alternative demand-side approaches have extended the range of feasible curvatures by

adopting a discrete-continuous choice framework where heterogeneous consumers choose either

a budget allocation for a given product (Adão, Costinot and Donaldson, 2017; Björnerstedt and

Verboven, 2016) or fractional units of the same product (Anderson and de Palma, 2020; Birchall and

5 See the 2015 report by the Council of Economic Advisors on “Big Data and Differential Pricing,” available
at https://obamawhitehouse.archives.gov/sites/default/files/whitehouse_files/docs/Big_Data_Report_

Nonembargo_v2.pdf, accessed on 5/29/2023.
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Verboven, 2022). Of course, there may be environments where modeling the budget share allocated

to a product is more appropriate than assuming consumers have unit demand for a product.

Finally, our focus on demand specification ignores the effect of supply-side frictions on cost

pass-through. Consequently, we do not impose a particular form of oligopoly pricing and price

optimality conditions in estimation, as supply-side misspecification may bias estimation results

(Conlon and Gortmaker, 2020). Such considerations, for example, the presence of menu costs

in adjusting price, may increase or decrease the pass-through implied by demand curvature under

static Nash-Bertrand pricing alone (Conlon and Rao, 2020). We view correctly modeling the supply

side as a separate concern whose importance depends upon the empirical setting. Accurately

capturing the shape of demand, however, is a necessary condition for understanding many aspects

of modern empirical work, such as analyses of mergers, taxation, tariffs, cost shocks, exchange

rates, and price discrimination.

Outline. We introduce the demand manifold framework in Section 2 and characterize the demand

manifold for the generalMLmodel in Section 3. We show mathematically how features of the mixing

distributions used in consumer preferences determine the shape of consumer demand, which we

represent via the relationship between elasticity and curvature. We then evaluate the implications

of different quasi-linear preference specifications for curvature and elasticity in Section 4. We extend

the analysis to environments with income effects in Section 5. Section 6 addresses estimating and

identifying heterogeneity in price sensitivity and non-price characteristics. Here, we describe our

proposed instrumentation strategy and investigate its properties in Monte Carlo analyses before

turning to our empirical application of uniform pricing from the ready-to-eat cereal industry.

Section 7 concludes by summarizing our contributions and providing guidance regarding extending

our work to other empirical settings where we think adding demand flexibility will be important

(e.g., healthcare). Additional results and derivations are reported in the Appendices.

2 A Primer on Demand Manifolds

In this section, we introduce the concept of a demand manifold, a smooth relationship between

demand elasticity and curvature consistent with profit maximization. Mrázová and Neary (2017)

provide an excellent formal derivation of demand manifolds and their properties for a wide range

of continuous demand specifications. We employ demand manifolds to assess the flexibility of

alternative preference specifications in the context of discrete-choice demand, highlighting relevant

issues that relate to the estimation of mixed-logit demand from an applied perspective.

We begin with a discussion of the demand manifold for a single-product monopolist, as we

rely on this setup in Sections 3-5 to illustrate graphically the properties of common discrete-choice

demand specifications. Next, we discuss demand sub-convexity, which we impose on the demand

systems in these analyses to ensure the existence of well-behaved equilibria and comparative statics.
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Demand sub-convexity weakly limits the feasible elasticity and curvature combinations by ensuring

demand becomes more elastic at higher prices.

2.1 Single-Product Monopoly

Consider the case of a single-product monopolist with constant marginal cost c. The monopolist

sets the price p that maximizes profits Π(p) = (p − c)·q(p) and the following necessary condition

holds:

Πp(p) = q(p) + (p− c)·qp(q) = 1− p− c

p
ε(p) = 0 ⇐⇒ ε(p) ≡ −p·qp(p)

q(p)
> 1 , (1)

where ε denotes the elasticity of demand. Similarly, the sufficient condition for price p to maximize

monopoly profits is:

Πpp(p) = 2qp(p) + (p− c)·qpp(q) < 0 ⇐⇒ ρ(p) ≡ q(p)·qpp(p)
[qp(p)]

2 < 2 , (2)

letting ρ denote the curvature of inverse demand. While demand can be concave (ρ < 0), linear

(ρ = 0), or convex (ρ > 0), concavity of the profit function rules out excessively convex demands.

Mrázová and Neary (2017) prove that a well-defined smooth equilibrium relationship con-

necting elasticity ε and curvature ρ exists for continuous demands that are decreasing (qp(p) < 0

and pq(q) < 0) and three times differentiable. This allows us to invert the elasticity in Equation (1),

and substituting into Equation (2), we obtain the demand manifold:

ρ[ε(p)] =
p2 ·qpp(p)
ε2(p)·q(p)

. (3)

The slope of demand plays a central role in the profit maximization necessary condition (1);

in equilibrium, demand must be elastic whenever firms have market power. Economists frequently

rewrite the necessary profit maximization condition in terms of markups or the Lerner Index.

The sufficient condition for profit maximization further requires that at the equilibrium

price, the monopolist’s marginal revenue function is non-increasing, which we rewrite in turn

in Equation (2) as a constraint on the equilibrium curvature of demand. Cournot (1838) first

established the connection between demand curvature and pass-through for a monopolist with

constant marginal costs:
dp

dc
=

1

2− ρ
> 0 , (4)

Hence, when the monopolist faces log-concave demand with ρ < 1, its pass-through of cost shocks is

incomplete, while it is more than complete in the case of log-convex demand with ρ > 1. Complete

– 7 –



pass-through occurs when ρ = 1.6 Our representation of the manifold in terms of (ε, ρ) therefore

directly relates to economic outcomes of interest, namely markups and pass-through.

2.2 Demand sub-convexity

Demand is said to be sub-convex (super-convex) if log[q(p)] is concave (convex) in log(p). In the

monopoly manifold examples we consider in Sections 3- 5, we focus attention on sub-convex demand

or instances when the demand elasticity increases in price; i.e.,

εp(p) =
ε2(p)

p
·
[
1 +

1

ε(p)
− ρ(p)

]
> 0 ⇐⇒ ρ(p) < 1 +

1

ε(p)
= ρ(p)CES . (5)

Equation (5) also establishes a cutoff condition for the curvature of sub-convex demand. For a given

elasticity ε, this cutoff is the curvature of the Constant Elasticity of Substitution (CES ) demand,

q(p) = βq−1/σ. CES demand is the only demand system where a single parameter determines both

elasticity and curvature: εCES = σ and ρCES = (σ+1)σ−1 > 1. Thus, εp(p) = 0, which implies the

well-known result that CES markups and pass-through are invariant to price.

There is widespread empirical evidence supporting the so-called Marshall’s (1920) Second

Law of Demand of demand becoming more elastic as prices rise.7 More importantly, the equilibrium

existence results for oligopoly models with differentiated products in Caplin and Nalebuff (1991a)

for single-product firms and in Nocke and Schutz (2018) for multi-product aggregative games. Our

analysis below also shows that sub-convexity helps generate well-behaved comparative statics and

equilibria: as price rises, the firm no longer has the incentive to continue raising the price and

garner increasing markups.

3 Demand Elasticity and Curvature for Discrete Choice Models

In this section, we rely on demand manifolds to explore the relationship between curvature and

elasticity in the context of the discrete choice demand model, which forms the backbone of much

empirical work in IO: mixed logit demand. We characterize the demand manifold, in general, for

6 In oligopoly markets, the pass-through rate also depends on substitution between products affected by a common
cost shock. Weyl and Fabinger (2013) focus on the symmetric single-product oligopoly version of equation (4):

dp

dc
=

1

1 + θ(1− ρ)
> 0 , (4’)

where θ is a conduct parameter ranging from θ = 0 for perfectly competitive to θ = 1 for monopoly. We evaluate
the difference between (4) and (4’) in the context of our Monte Carlo study of a non-symmetric oligopoly setting
in Section 6.2.

7 This includes evidence on the relationship between markups and the scale of production in macroeconomics
(see Mrázová, Neary and Parenti, 2021, and references therein), markup adjustments after trade liberalization
(De Loecker, Goldberg, Khandelwal and Pavcnik, 2016), pass-through of exchange rates for coffee and beer in trade
(Nakamura and Zerom, 2010; Hellerstein and Goldberg, 2013), as well as tax pass-through in the legal marijuana
market (Hollenbeck and Uetake, 2021) and markup adjustments to changes in commodity taxation in IO (Miravete,
Seim and Thurk, 2018).
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arbitrary specifications of preference heterogeneity, which we refine in the following sections. We

define the indirect utility of consumer i from purchasing product j as:

uij = xjβ
⋆
i + fi(yi, pj) + ξj + ϵij , i ∈ I, j ∈ J , ϵij ∼ EV1 , (6)

where (xj , ξj) denote observed and unobserved characteristics of product j, respectively, pj its price,

and yi consumer i’s income. Mixed logit allows for heterogeneity in consumers’ valuation of the

product characteristics x via β⋆
i . We normalize the value of the outside option to zero.

The sub-function fi represents how spending on the outside good, yi − pj , affects indirect

utility. The effect of outside good spending varies by individual i, because income varies across

consumers and because consumers differ in price sensitivities. To simplify notation, we write:

f ′
ij =

∂fi(yi, pj)

∂pj
, and f ′′

ij =
∂2fi(yi, pj)

∂p2j
. (7)

Thus, f ′
ij represents the marginal effect of price pj on consumer i’s indirect utility while f ′′

ij

represents how this marginal effect changes with price.

Individual i purchases product j if uij ≥ uik , ∀k ∈ {0, 1, . . . , J}. Because of the additive

i.i.d. type-I extreme value distribution of ϵij , individual i’s choice probability of product j is:

Pij(p) =
exp

(
xjβ

⋆
i + fi(yi, pj) + ξj

)
1 +

J∑
k=1

exp
(
xkβ

⋆
i + fi(yi, pk) + ξk

) . (8)

Notice that individual i makes a dichotomous decision about purchasing product j (i.e.,

“Buy j” vs. “Buy Something Else”). The purchase decision is the outcome of a Bernoulli random

process with a probability of success Pij , which varies with the vector of prices and characteristics

of the different alternatives. The Bernoulli random variable has mean µij = Pij , variance σ2
ij =

Pij(1−Pij), and (non-standardized) skewness of skij = σ2
ij(1−2Pij). Aggregating over the measure

of heterogeneous individuals summarized by G(i), total demand for product j becomes:

Qj(p) =

∫
i∈I

Pij(p) dG(i) . (9)

We can now write the elements defining the demand manifold, elasticity, and curvature

of product j, relegating the detailed derivations to Appendix B. The own-price demand elasticity

of product j amounts to a scale-free measure that aggregates individual price responses (demand

slopes) weighted by their choice variance:

εj(p) = − pj
Qj(p)

∫
i∈I

f ′
ij ·σ2

ij dG(i) , (10)
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Similarly, the demand curvature of our discrete choice model is:

ρj(p) =

∫
i∈I

µij dG(i)×

∫
f ′′
ij · σ2

ij dG(i) +

∫ (
f ′
ij

)2
· skij dG(i)[∫

f ′
ij · σ2

ij dG(i)

]2 . (11)

Combining elasticity (10) and curvature (11), we obtain the general expression for the mixed logit

demand manifold:

ρj [εj(p)] =
p2j

ε2j (p) ·Qj(p)
·
[∫

f ′′
ij ·σ2

ij dG(i) +

∫ (
f ′
ij

)2 ·skij dG(i)

]
︸ ︷︷ ︸

Mixing Distributions

. (12)

From (12) we observe that the link between elasticity-curvature is driven by the mixing

distributions (right-most terms) in the underlying distribution of customers. While these are best

understood as primitives of customer demand, they are most often chosen by the researcher ex-ante.

Our objective is to show how these choices impact the connection between not only estimated

elasticity (market power) and curvature (pass-through) but also the counterfactual implications of

common assumptions.

How the researcher defines taste heterogeneity {σ2
ij , skij} and the pricing sub-function

f(·) plays a fundamental role in determining demand elasticity and curvature. Non-price tastes

are almost always assumed linear in customer demographics, and non-observed heterogeneity is

captured via a standard normal distribution. These choices implicitly restrict {σ2
ij , skij}, restricting

the relationhsip between elasticity and curvature.

A common empirical sub-function is simply the linear function of outside good spending,

i.e., fij(yi, pj) = α⋆
i (yi − pj), resulting in quasi-linear demand. The curvature is now driven by

heterogeneity in the idiosyncratic price sensitivity α⋆
i for a given elasticity. We consider this case in

Section 4. Alternatively, the researcher could impose a non-linear sub-function (Griffith, Nesheim

and O’Connell, 2018), with different implications for curvature and pass-through, which we discuss

in Section 5.

We illustrate graphically how choices of taste heterogeneity {σ2
ij , skij} and the pricing

sub-function f(·) impact the shape of the demand manifold using this monopoly model as a simple

example. The above demand manifold definition and insights, however, extend to multi-product

oligopoly settings by including both direct own-price effects and indirect cross-price effects through

the dependence of choice probabilities in Equation (8) on the vector of all prices p. Equation (12)

is thus the manifold of residual demand for product j. How the introduction of competition affects

the link between curvature and pass-through in practice depends on the specific substitution effects

across products. We return to this issue in Section 6.
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4 Quasi-Linear Preferences

This section considers quasi-linear preferences, which researchers commonly rely on for inexpensive

products like the cereal varieties considered in Nevo (2000). Quasi-linear preferences imply simpler

curvature derivations since f ′′
ij=0. We thus consider the following variant of equation (6):

uij = xjβ
⋆
i + α⋆

i

(
yi − pj

)
+ ξj + ϵij , i ∈ I, j ∈ J , ϵij ∼ EV1 , (13)

where we include α⋆
i to capture consumers’ heterogeneous price sensitivity, which we model as

α⋆
i = α + σpϕi. Therefore, the distribution of price sensitivity has a mean of α with deviations

driven by the shape of the mean-zero distribution Φ of ϕi, scaled by σp.

We follow the literature in specifying heterogeneity in the valuation of product characteristic

x by decomposing β⋆
i into β⋆

i = β + σxνi, where β similarly denotes the mean valuation while νi

captures the idiosyncratic heterogeneity in the valuation of the observed product characteristic,

which we assume to take the form of a standard normal random variable scaled by σx.

Note that purchase decisions based on indirect utility comparisons do not depend on

individual income yi, which shifts the indirect utility of all products by α⋆
i yi. There are thus

no income effects. Furthermore, with fi(yi, pj) linear in price, f ′
ij = −α⋆

i and f ′′
ij = 0. Hence,

inverse demand curvature is:

ρj(p) =

∫
i∈I

µij dG(i)×

∫
(α⋆

i )
2 · skij dG(i)[∫

−α⋆
i · σ2

ij dG(i)

]2 , (14)

and the demand manifold simplifies to:

ρj [εj(p)] =
p2j

ε2j (p) ·Qj(p)
·
∫
(α⋆

i )
2 ·skij dG(i) . (15)

Curvature and elasticity are thus inversely related for any price-quantity pair as long as skij =

σ2
ij(1− 2Pij) > 0, when the probability Pij of choosing any single product is sufficiently small, e.g.,

the common case of choosing among many consumer products.

4.1 Demand Manifolds of Common Discrete Choice Demand Specifications

We now employ Equation (15) to explore the demand manifolds of several workhorse discrete choice

specifications from the empirical literature: MNL, CES , ML with random coefficients on product

attributes, and ML with a random coefficient on price. The extent and manner in which these

specifications introduce flexibility in the preference specification vary, enabling us to demonstrate

how the demand model’s capacity to accommodate feasible combinations of elasticity and curvature

changes as we relax these restrictions.
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Multinomial Logit (MNL). In the MNL model, there is no unobserved heterogeneity, so σp =

σx = 0 and α⋆
i = α and β⋆

i = β. Hence, Pij = Pj = sj(p) is the market share of product j.

Elasticity and curvature reduce to:

εj(p) = αpj
(
1− Pj

)
, (16a)

ρj(p) =
1− 2Pj

1− Pj
< 1 . (16b)

Combining Expressions (16a)-(16b), we obtain the MNL demand manifold:

ρj [εj(p)] =
αpj
(
1− 2Pj

)
εj(p)

. (17)

Equation (16b) shows that MNL demand is concave with negative curvature only in very

concentrated markets where the share of a single product exceeds 50% of sales. Irrespective of

market shares, MNL restricts demand to be log-concave and ρj(p) < 1 for all possible prices.

Thus, pass-through in any MNL demand model is necessarily incomplete regardless of setting

and identification strategy. Furthermore, since MNL demand curvature (16b) decreases in Pj ,

pass-through grows arbitrarily close to complete for settings with a multitude of atomistic products

– a common feature of the multi-product oligopolies studied in practice, such as automobiles,

breakfast cereals, spirits, etc.

The left panel of Figure 2 depicts several demand manifolds for a single-product monopoly

MNL model. We fix the product attribute to take a value of X = 1 and allow consumer valuations

for the attribute β to range from {β, β + 1 . . . , β + 5}, with β = 1. We set the price response

coefficient α = 0.5 and consider elasticity-curvature combinations at different price levels. Each

manifold is color-coded by level of price, ranging from pj = 0 (darkest) to pj = 10 (lightest). Note

that higher prices always correspond to more elastic demands and lower equilibrium markups.

Increasing the average valuation of the product attribute, β, to β + 1, β + 2,. . . , shifts the

demand manifold upwards from the base MNL demand manifold in Figure 2. Increasing mean

demand for a product thus decreases both demand curvature and price elasticity for a given price,

consistent with Equation (17).

Constant Elasticity of Substitution. The decreasing and convex black dashed curve in Figure 2

represents the (ε, ρ) combinations for CES demand under alternative values for the elasticity of

substitution. Anderson, de Palma and Thisse (1987, 1992) were the first to show that a discrete

choice model where individuals spend a fraction of their income on a continuous quantity of a single

product can generate the CES utility function of the representative consumer model (Dixit and

Stiglitz, 1977). Thus, CES arises naturally in the context of discrete-continuous models (Hanemann,

1984), while MNL is most appropriate when consumers have unit demand. However, like the MNL

model, CES choice probabilities suffer from the IIA property in producing unrealistic substitution
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Figure 2: Multinomial and Mixed Logit Manifolds
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patterns. Figure 2 also illustrates that for the same elasticity, the CES and MNL models imply

different demand curvatures (and pass-through). The researcher’s choice of one of these two demand

models thus restricts pass-through in stark ways, accommodating either only over- or under-shifted

pass-through, respectively, which may not be consistent with the underlying data.

ML with Characteristic Random Coefficients. As the primary motivation for empirical

research, accounting for idiosyncratic preferences for product attributes can relax the restricted

substitution patterns generated by MNL demand. We thus consider introducing individual hetero-

geneity in the valuation of the product attribute, continuing to assume that all consumers have the

same price responsiveness with αi = α. Will adding this flexibility also address the limitations of

MNL in ex-ante restricting curvature?

The right panel of Figure 2 shows several demand manifolds for such a ML model, allowing

the standard deviation of the random coefficient on the product attribute to increase from σx = 1

to σx = 2, while holding fixed the mean product valuation at β = 1. Adding individual preference

heterogeneity “rotates” manifolds: for a given demand elasticity, preference heterogeneity reduces

demand curvature and, hence, pass-through. The firm now faces a segment of consumers with high

valuations for its attribute over whom it has market power locally, and it reduces its pass-through

relative to the case of uniform preferences.

The light-red shaded area denotes the combinations of elasticity and curvature that a ML

model with heterogeneity in the valuation of the product characteristic can generate for mean

valuations of β ≥ 1. The figure illustrates that the ML model with normally distributed attribute

preferences continues to generate log-concave demand. Caplin and Nalebuff (1991b) show that ML

demand remains log-concave under any other log-concave distribution of idiosyncratic preferences,

comprising the vast majority of distributions used in economics (Bagnoli and Bergstrom, 2005).

Further, this result extends naturally to the nested logit – a demand system commonly employed
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in antitrust economics – because it provides for more reasonable substitution patterns with a small

computational burden.8 Mathematically, equation 14 demonstrates that curvature can only come

through the shape of the choice probability distribution (Pij), particularly the skew. Achieving

greater curvature with product characteristics therefore would require mixing distributions for

idiosyncratic preferences that feature a large tail.9

It is evident that this version of a ML model has inherent limitations when used to empir-

ically study pass-through in non-competitive environments: pass-through is necessarily restricted

to be incomplete.10 In empirical settings with log-convex demand, firms with market power aim

to over-shift cost shocks. Employing a MNL or a ML model with idiosyncratic preferences over

attributes in such instances would result in biased preference estimates that generate the closest

demand curvature to the true data-generating process that these models can produce, a curvature

of effectively one. Figure 2 illustrates that to exhibit such demand curvature, the estimated model

would either understate the true degree of idiosyncratic product attribute preferences or overstate

consumers’ true price sensitivity, generating the appearance of a competitive environment with full

pass-through.

ML with Price Random Coefficients. How can we expand the range of curvatures that the ML

estimates can accommodate to allow for log-convex demand and thus over-shifting of pass-through?

The only element of preferences that remains to be considered is idiosyncratic price responsiveness.

Substituting α⋆
i = α+ σpϕi into the demand manifold for quasi-linear preferences (15) results in:

ρj [εj(p)] =
p2j

ε2j (p) ·Qj(p)
·
∫
(α+ σpϕ)

2 ·skij dΦ(i) (18)

In the absence of idiosyncratic price heterogeneity, σp = 0, this demand manifold coincides with the

manifold of the MNL in Equation (17). Thus, for any given demand elasticity and price-quantity

pair, an increase in the spread of the distribution of idiosyncratic price heterogeneity via σp expands

the range of demand curvatures that the model can generate.11 With a sufficiently large σp, we

show the manifolds will cross the unit curvature threshold, allowing discrete choice demand to

accommodate pass-through rates above 100%.

To illustrate this argument, we assume a log-normal distribution for the idiosyncratic price

responsiveness, which ensures that individual demands are all downward sloping (Train, 2009);

8 McFadden and Train (2000) demonstrate that aML specification with random coefficients on product characteristics
can generate equivalent substitution patterns to the nested logit model.

9 Our experiments show that while it is possible to extend demand curvature to be greater than one with idiosyncratic
product characteristics alone, it takes a significant skew to achieve small increases in demand curvature beyond
one.

10This is at odds with the mounting evidence of pass-through rates exceeding 100% in horizontally differentiated
products industries such as groceries (Besley and Rosen, 1999); clothing and personal care items (Poterba, 1996);
branded retail products (Besanko, Dubé and Gupta, 2005); gasoline and diesel fuel (Marion and Muehlegger, 2011);
as well as beer, wine, and spirits (Kenkel, 2005) among others.

11 Indeed, the shift of each manifold to the right is proportional to the second order moment of the distribution Φi.
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Figure 3: Multinomial and Mixed Logit Manifolds

 0.0  0.2  0.4  0.6  0.8  1.0  1.2  1.4  1.6  1.8  2.0
Demand Curvature ( )

 1.0

 2.0

 3.0

 4.0

 5.0

 6.0

 7.0

 8.0

De
m

an
d 

El
as

tic
ity

 (
)

CES Boundary

Super-Convex Region+ 5

+ 4

+ 3

+ 2

+ 1

MNL 1
p

2
p

3
p

4
p

uij = Xj + ipj + ij

i = p i

i LogNormal(0, 1)

    Mixed Logit Demand Manifolds

 0.0

 2.0

 4.0

 6.0

 8.0

10.0

Notes: Starting with the demand manifold of the MNL model, β + 1, β + 2, . . . indicate the demand manifolds of MNL models
for higher valuations of the inside good. The other manifolds refer to the ML model with price random coefficients where
σ1
p < σ2

p < σ3
p < σ4

p. The random component of the slope of demand is more important for large values of σp.

ϕi ∼ Φ(0, 1) = log-normal(0, 1). In Figure 3, we start from the MNL manifold and depict how

the shape of the manifold changes as we increase the standard deviation of the log-normal mixing

distribution σp from 0 to 1 for a fixed mean price sensitivity α.12 We find that manifolds now

cross into the log-convex region of demand with more than complete pass-through, a result that

is consistent with many of the (ε̂, ρ̂) estimates for the breakfast cereal products in Figure 1’s first

panel.

4.2 The Shape of Price Mixing Distribution

Figure 3 uses the example of the log-normal distribution to show that increasing the variation in

idiosyncratic price responsiveness increases the feasible curvatures the ML model can accommodate

for a given elasticity value. We now consider the choice of price mixing distribution, focusing on the

range of feasible elasticity and curvature combinations up to the CES boundary that a candidate

price mixing distribution can generate. We limit attention to two price mixing distributions common

in empirical work: normal and log-normal distributions.

12Note that to say σp is “large” is only meaningful in its relation to the mean price coefficient (α).
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Figure 4: Demand Manifolds: Standard Normal Price Mixing Distribution
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4.2.1 Demand under a Normal Price Random Coefficient

The left panel of Figure 4 represents demand, elasticity, and curvature at different prices for a ML

model with a normal price random coefficient. We illustrate the case where the product attribute X

and consumer valuations for the attribute β both take on values of one; mean price responsiveness

remains at α = 0.5 and the standard deviation of the price random coefficient σp = 0.15 so that

we can address demand behavior both in the sub-convex and super-convex regions. We measure

quantity on the left axis and elasticity and curvature on the right axis. The top shaded area

identifies the log-convex region of demand, corresponding to curvatures greater than one.

From the black solid line representing the MNL case when σp = 0, demand rotates to the

red solid line once we allow for heterogeneous price sensitivity as some consumers’ price sensitivity

is now lower. Demand elasticity increases monotonically in price for the MNL model (black dashed

lined), but including the random price coefficient dampens this pattern (red dashed lines). Indeed,

the ML’s demand elasticity reaches a maximum.

In the right panel, we depict, among others, the demand manifold corresponding to this

particular demand specification with σp = 0.15; the manifold depiction illustrates that the maxi-

mum elasticity is reached precisely at the price level where the demand manifold crosses the CES

locus.13 For higher prices, elasticity decreases in price, violating Marshall’s Second Law. We also

observe that for demand to be sub-convex, we require less heterogeneity in price-sensitivity among

consumers (i.e., smaller values of σp).

13Davis (2005) first addressed this behavior of demand elasticity estimates in discrete choice models. Chintagunta
(2002) documented empirically that demand elasticity is quasi-linearly increasing in price in ML models while
Björnerstedt and Verboven (2016) attributed this property to the linearity of conditional utility in price.
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Figure 5: Demand Manifolds: Log-normal Mixing Distribution

(a) Elasticity & Curvature: Log-normal
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4.2.2 Demand Under a Log-normal Price Random Coefficient

The left panel of Figure 5 depicts the equivalent demand system assuming that idiosyncratic price

sensitivity is distributed log-normal with σp = 0.3. Relative to the prior case, a log-normally

distributed price random coefficient induces a larger rotation of demand as the mass of consumers

with low price responsiveness is larger. The ML’s price elasticity now grows quasi-linearly in

price for a larger price range. Thus, with a log-normal price random coefficient, the manifold is less

likely to cross into the super-convex region of demand. As with a normally distributed price random

coefficient, log-normally distributed idiosyncratic price responsiveness accommodates a curvature

above one, but the curvature quickly reaches a maximum at low prices and converges asymptotically

to ρ = 1 as the price increases.14

4.2.3 Normal vs. Log-normal Price Random Coefficients

The right panels of Figures 4 and 5 depict the demand manifolds when price random coefficients

are normally and log-normally distributed, respectively, for alternative values of σp. The light-red

shaded area identifies all combinations of (ε, ρ) within the sub-convex region of demand that are

feasible under each model for any combination of the structural parameters (α, σp, β).

The right panel of Figure 4 illustrates that while a normal price random coefficient accom-

modates some log-convex demands, the range of log-convex (ε, ρ) combinations is limited. For large

values of σp, demand manifolds are upward sloping until they cross the CES locus. Constraining

demand to be sub-convex limits the role of idiosyncratic price responses in preferences, as the

admissible values of σp are small. The symmetric normal distribution includes both positive and

14This hints at demand manifolds becoming downward sloping at some price level in the log-convex region for the
log-normal mixture but not necessarily so for the normal distribution.
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negative deviations from the mean price sensitivity α. Thus, unless the extent of heterogeneity in

price sensitivity is limited, the model has to accommodate an increasingly large share of individ-

uals with upward-sloping demands. The feasible log-convex elasticity-curvature combinations are

thus frequently characterized by a high elasticity of demand, effectively minimizing instances of

upward-sloping demand.

The utilization of a one-tailed log-normal distribution introduces skewness (Equation 18)

and expands the scope for more prominent differences in price sensitivity and curvature; the right

panel in Figure 5 shows larger values of σp continue to generate sub-convex demand. This results

in a much larger range of feasible curvatures for a given demand elasticity, particularly for less

elastic demands where firms enjoy more market power. Figure 5 hence shows that a model with a

log-normal price random coefficient can admit most well-behaved curvature-elasticity pairs in the

sub-convex region of demand, except for a small set of (ε, ρ) combinations close to the CES locus.

As these are part of the feasible region of the specification with a normal price random coefficient,

we explore the ability of the generalized normal distribution as a mixture between a normal and

log-normal distribution to extend the set of (ε, ρ) pairs; see Appendix C.

4.3 Demographic Interactions and Demand Curvature Estimates

In empirical applications, researchers rely on the fact that idiosyncratic price responsiveness is cor-

related with demographics. Rather than imposing a distribution on idiosyncratic price sensitivities,

as we did above, one might therefore specify the idiosyncratic price sensitivity αi as a function of

an observable demographic di, i.e., α
⋆
i = α + πddi. The equivalence to the analysis of Section 3

is apparent: it is now the empirical distribution of demographic di that underlies measure G(i) in

the manifold expression (3) and that determines the feasible combinations of (ε, ρ) pairs that the

demand system can accommodate. In Section 6.3, we consider how to relax the assumption that

di linearly shifts price sensitivity by allowing the data to determine a flexible relationship between

the demographic attribute and price sensitivity.

4.4 Summary

The analysis in this section indicates that a quasi-linear discrete choice demand model that in-

corporates flexible heterogeneity in consumer preferences for product attributes and, notably, in

price sensitivities does not impose substantial ex-ante restrictions on the curvatures and elasticities

the model can accommodate. In particular, the quasi-linear model is capable of accommodating

curvature-elasticity pairs up to and including those observed in the CES demand model.

5 Beyond Quasi-Linear Preferences

Quasi-linear preferences may be appropriate for representing the demand for low-priced products

where income effects are likely small. However, for products like the original car application in
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BLP , the purchase price accounts for a substantial portion of consumer income. The indirect utility

specification in BLP accommodates income effects by incorporating a nonlinear function of outside

good spending into preferences. In this section, we explore the implications of this specification

for the demand model’s ability to encompass the full range of curvatures and elasticities associated

with sub-convex demand.

5.1 Flexible Income Effects

In contrast to the quasi-linear case where outside good spending enters consumers’ indirect utility

linearly, BLP specifies the preferences in Equation (6) with the following price sub-function:

fi(yi, pj) = α ln
(
yi − pj

)
. (19)

Both the quasi-linear price sub-function and BLP ’s alternative are, however, special cases of a

Box-Cox power transformation (Box and Cox, 1964) of outside good spending, which is consistent

with utility maximization in discrete choice contexts for any value of parameter λ ∈ R driving

the convexity or concavity of the transformation. We, therefore, specify the generalized price

sub-function,

fi(yi, pj) = α⋆
i

(
yi − pj

)(λ)
=


α⋆
i

(
yi − pj

)λ − 1

λ
, if λ ̸= 0 ,

α⋆
i ln

(
yi − pj

)
, if λ = 0 ,

(20)

and explore how the value of the power parameter λ affects demand elasticity (10), curvature (11),

and the shape and position of the manifold (12) through its effect on f ′
ij and f ′′

ij in Equation (7).

In line with the BLP specification, we abstract from heterogeneity in price sensitivity and consider

the case of α⋆
i = α. A power parameter of λ = 0 thus yields the BLP model, while a power

parameter of λ = 1 results in a MNL model. This means that the income distribution captures any

idiosyncratic price responsiveness across individuals, modulated byλ.15

15 It is worth comparing our setup to the multi-unit demand model of Birchall and Verboven (2022) who rely on a
different Box-Cox transformation in the price subfunction, f(yi, pj) = γλ−1

(
yλ
i − 1

)
λ−

(
pλj − 1

)
λ. The associated

conditional demand function of qij = (γyi/pj)
1−λ is a nonlinear function of the fraction of the allocated share of

income, γ, spent on a chosen product. Their transformation is an h-function bridging MNL and CES demands,
e.g., Nocke and Schutz (2018, Proposition VII, Appendix VI.1), which Anderson and de Palma (2020, §5.4) show
to be well-defined for λ ∈ (0, 1). Curvature flexibility thus results from a hybrid combination of these two demand
models but disappears when the specification reduces to the quasi-linear unit-demand case when λ = 1. Our goal
in specifying subfunction (20) is instead to allow for curvature flexibility within the confines of a unit-demand setup
consistent with utility maximization (e.g., Roy’s identity holds for qij = 1). Our Box-Cox transformation parameter
can take any real value, accommodating stronger or weaker income effects and hence curvature flexibility.
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As in Berry, Levinsohn and Pakes (1999), we adopt a first-order Maclaurin series approxi-

mation (at pj = 0) of the Box-Cox transformation:16

fi(yi, pj) = α
(
yi − pj

)(λ) ≃ αy
(λ)
i − αpj

y1−λ
i

. (21)

As the first term in this sub-function does not vary across products j, the marginal effect of price

pj on indirect utility is again constant with f ′
ij = −α(yi)

λ−1 and f ′′
ij = 0. The resulting demand

elasticity and curvature are:

εj(p) = − pj
Qj(p)

∫
i∈I

− α

y1−λ
i

·σ2
ij dG(i) , (22a)

ρj(p) =

∫
i∈I

µij dG(i)×

∫
(1− λ)α2

y2−λ
i

· σ2
ij dG(i) +

∫
α2

y
2(1−λ)
i

· skij dG(i)[∫
− α
y1−λ
i

· σ2
ij dG(i)

]2 , (22b)

yielding a demand manifold of:

ρj [εj(p)] =
p2j

ε2j (p) ·Qj(p)
·

∫
i∈I

α2 ·
[
(1− λ)y−λ

i ·σ2
ij + skij

]
y
2(1−λ)
i

dG(i) . (23)

In Figure 6, we plot the demand manifold under various power parameters λ, assuming as

above that the valuation of the product attribute, βXj , equals one and price sensitivity λ equals

0.5. We rely on a log-normal approximation to the U.S. income distribution in our representation

of yi. The figure illustrates that, as in the case of the quasi-linear utility with flexible idiosyncratic

price sensitivities, accommodating income effects via the approximate Box-Cox transformation of

outside good spending yields preferences that can accommodate curvatures close to those of the

CES boundary for a power parameter between zero and one.17

We provide some initial empirical context for the role of the Box-Cox power transform in

shaping elasticity and curvature of ML demand by conducting a similar analysis to the one in

the introduction. We display the elasticity and curvature combinations of two alternative demand

models for breakfast cereal in the spirit of Nevo (2001). Now, we rely on the automobile data

from Berry, Levinsohn and Pakes (1995) to illustrate the elasticity and curvature properties of a

ML model with income effects modulated by the power parameter λ, contrasting the original BLP

specification (λ = 0) with a quasi-linear specification with a common price sensitivity (λ = 1)

16Note that for λ = 1, Equation (21) again leads to the MNL model, but for λ = 0, the price sub-function becomes
α ln yi − αpj/yi, which only coincides with (20) for yi = 1. The preference specification based on Equation (21) is
only approximately consistent with utility maximization.

17While we consider a power parameter λ ∈ [0, 1], in line with the empirical literature, Box and Cox (1964) consider
λ ∈ [−5, 5], which would expand the range of feasible curvature elasticity pairs beyond the ones depicted in Figure 6.
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Figure 6: Box-Cox Transformation and Demand Manifolds
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Notes: Demand manifolds for different values of the Box-Cox transform parameter λ using the U.S. income distribution and
the rest of the model specification of Berry et al. (1999). The dot identified as ”BLP (95/99)” corresponds to the average
estimated curvature and elasticity value using the BLP automobile data and estimation best practices as outlined in Conlon
and Gortmaker (2020).

and two in-between cases (λ = 0.5 and λ = 0.75). We estimate four sets of preferences holding λ

fixed at each value, otherwise following BLP in choice of specification and identification strategy.

Figure 7 shows the scatter plots of (ε̂, ρ̂) for each automobile model in the BLP data under these

four alternative specifications.

The top left panel represents the quasi-linear case. The average estimated automobile

demand elasticity is ε̂ = 2.75 with nearly full (single-product) pass-through, ρ̂ = 0.99, as any mixed

MNL without idiosyncratic price sensitivity is necessarily log-concave, as shown in Section 4.1.

Note also the sorting of automobiles by price: the estimated demand is substantially more elastic

for the most expensive vehicles.

The demand estimates are log-convex for all automobile models whenever we allow for

some income effects, as shown in the other three panels of Figure 7. Reducing λ increases the

importance of income effects through smaller price responses by higher-income households. Moving

from quasi-linear demand to demand with income effects does not significantly change the average

estimated elasticity, reaching ε̂BLP = 2.83 when λ = 0. Despite the similar average price elasticity,

the curvature distribution (passthrough) varies substantially across specifications. This is similar
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Figure 7: Income Effects and Demand Manifolds
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Figure Notes: Each dot represents the point elasticity and curvature estimates for each observation in the BLP automobile
data, while the gray dot corresponds to the average elasticity and curvature estimates. “Expensive” and “ Cheap” products
are defined as vehicles with average prices in the top and bottom 20%, respectively. We define the remaining vehicles
“Moderate.”

to what we observed in the motivating RTE cereal case. Relative to the quasi-linear specification,

the expensive (cheap) market segment is much less (more) competitive under the BLP model.

Curvatures decrease monotonically with λ, with ρ̂ = 0.99 when λ = 1 to ρ̂BLP = 1.35 when

λ = 0 (which, in this case, coincides with the curvature of the CES model evaluated at the average

elasticity: ρ̂CES = 1 + 1/2.83 = 1.35). Average pass-through rates thus increase from 99% in the

quasi-linear specification without income effects to 179% with the strong income effect specification

of BLP demand – dramatically different predictions. We report average elasticity, curvature, price

markup, and pass-through rate estimates for each scenario in Table D.1 in Appendix D. The

intermediate cases of λ = 0.5 and λ = 0.7 make clear that income effects broadly not only restrict

the range of demand elasticity (and markup) estimates but also expand the range of demand

curvature (and pass-through rate) estimates that a discrete choice model of demand can deliver.
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5.2 Discussion

The preceding sections demonstrate that the ML model exhibits significant flexibility in capturing

realistic substitution patterns and generating a wide range of cost pass-through when we allow for

heterogeneity in consumer valuations for product attributes and price sensitivity. The intuition is

that idiosyncratic attribute valuations give firms localized market power, leading to under-shifted

pass-through, while consumer heterogeneity in price sensitivity entails over-shifted pass-through

because the firm focuses on different customer types in response to cost changes. The combined

effect of these two forces drives a given product’s pass-through.

Figure 8: Heterogenous Customers and the Shape of Demand
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To make this intuition concrete, we present a simple example of pricing by a monopolist who

caters to two consumers with linear demands of different slopes in Figure 8, Panel a. The monopolist

sets prices for each customer and responds to an increase in cost (red lines) by increasing equilibrium

prices by half of the cost increase; i.e., pass-through is “under-shifted.”

In many empirical settings, including the ready-to-eat cereal context below, firms do not

practice such perfect price discrimination.18 In Panel b, we show that in setting a uniform price, the

monopolist now faces a kinked demand.19 At the initial marginal cost and implied optimal price,

the monopolist serves both customer types. Once marginal cost increases, the firm maximizes profit

by increasing the price to a level that serves only the price-insensitive customer. Pass-through is

over-shifted. More generally, in responding to an increase in cost, a firm serving heterogeneous

consumers with a uniform price trades off the standard incentive to remain on the elastic portion

of demand and the benefits of catering to less price-sensitive customers only.

How do these theoretical points translate to empirical work? In Panel c, we observe that

the kinked demand intuition extends naturally to the ML framework since product demand is a

function of the underlying mixing distributions.20 If we restricted ourselves to MNL demand and

only observed the two price-quantity pairs in the data, our estimator would infer incorrectly that

a positive demand shock had also occurred (ξ2 > ξ1). This is because the shape of MNL demand

is not sufficiently flexible to reconcile the first-order conditions at both points without adding a

demand shift. When we add flexibility via heterogeneity in price sensitivity, we observe that the

demand function (red line) can now contain both points on a single demand curve – just as in the

kinked linear demand case.

In Panel d, we show these two points are also consistent with a single CES demand function.

The CES demand entails two differences from MLḞirst, we observe in the figure that the difference

between ML and CES demand becomes large as the price drops. Consumers purchase discrete

quantities in ML but can choose arbitrarily small quantities in CES . Second, CES constrains

curvature and pass-through to be constant. Hence, in a neighborhood where the ML and CES

demand functions have similar demand curvatures, e.g., when price exceeds three, ML cost pass-

through is far below what CES would predict. Thus, while CES is a useful simplification of ML

for estimation, its pass-through predictions in oligopoly settings are restrictive.

18A subtle but important point that we leverage in our empirical study of uniform pricing is that the shape of demand
depends on the markets firms choose to compete in because such decisions imply consumer preference heterogeneity.

19 In an influential paper, Kimball (1995) first suggests a smooth differentiable version of this kinked demand to
ensure subconvexity and markups that increase in the scale of production.

20We know, however, from Jaffe and Weyl (2010) that random utility models are inconsistent with linear demand so
our simple example remains a heuristic.
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6 Guidance for Empirical Work

Our work thus far addresses the question of how to model the shape of demand via non-price

characteristics and price sensitivity flexibly to limit the impact of the utility specification on pass-

through. Now, we turn to how to identify and estimate the shape of demand in an empirical setting.

We propose (a) to model the distributions of heterogeneous customer tastes using the Box-Cox

power transform (Box and Cox, 1964) and (b) an identification strategy that exploits heterogeneous

consumer responses to exogenous price or product attribute changes. While only one possible way of

representing consumer heterogeneity, the Box-Cox transform is a simple, one-parameter mechanism

to transform data into mixing distributions consistent with identifying data moments. We detail

our instrumentation strategy in Section 6.1.

In Section 6.2, we use Monte Carlo evidence to demonstrate that our identification strategy

works, illustrate the consequences of mis-specification, and provide evidence of how competition

affects pass-through relative to the earlier single-product monopolist. In Section 6.3, we return

to our motivating example from Nevo (2000) and apply our approach to an empirical setting –

ready-to-eat cereal. We provide welfare estimates of uniform pricing and highlight the dependence

of these estimates on the representation of preference heterogeneity.

6.1 Instruments to Identify Demand Manifolds

Here, we consider taking the preference specification in Equation (6) to data when allowing for

nonlinear taste heterogeneity. Consider, for example, the consumers’ sensitivities to price. Em-

pirically, one could represent them with a flexible function of consumers’ demographics, a flexibly

distributed price random coefficient, or nonlinear income effects through e.g., a Box-Cox power

transform, as in Section 5.1.21 How can the data pin down these price mixing distributions?

We employ a variant of the instruments originally proposed by BLP and refined as “Differ-

entiation IVs” by Gandhi and Houde (2020): the distance of the focal product from rivals in product

characteristic space. Changes in the focal product’s isolation in characteristic space exogenously

shift its demand under the assumption that product characteristics are chosen before demand

unobservables, ξ, are realized. A comparison between instances where there are many similar

products versus few similar products reveals the extent to which consumers substitute to similar

products, akin to observing exogenous variation in choice sets. As we would like the heterogeneity in

substitution to depend on income or other observable consumer demographics to capture variation

in price responsiveness across different consumer groups, we interact the Differentiation IV with

moments from the distribution of the demographic, e.g., income. This allows us to recover the shape

of the distribution of consumers’ price sensitivities and, hence, the curvature of a unit demand

function.

21This is the same argument used long ago in transportation economics to account for decreasing marginal utility of
travel and compare the benefits of a given reduction time for commuting trips of very different length (Gaudry and
Wills, 1978; Koppelman, 1981).
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A challenge, of course, when employing this instrument to identify price sensitivity, is the

endogeneity of prices in an oligopoly equilibrium: unobserved demand shocks ξ may confound

the response in price to a change in cost ω. We follow Gandhi and Houde (2020) and construct

exogenous price predictions via a reduced-form hedonic price regression based on exogenous char-

acteristics xt and cost shocks ωt:
22

pt = γ0 + γ1xt + γ2ωt + ut . (24)

We run the above regression and use the results to construct the vector of predicted (exogenous)

prices p̂t. We then construct differences in price-space between product j and its competitors:

Zp
jt =

∑
r

(
p̂rt − p̂jt

)2

. (25)

Equation (24) enables us to construct exogenous prices by separating price effects due to changes

in demand (via ξ) from changes in cost (via ω). It is also a simple pass-through regression.

Cost pass-through informs the identification of demand primitives related to curvature using γ̂2

via the demand shocks captured in equation (25). While Gandhi and Houde (2020) recommend

relying on Zp to identify the distribution of unobserved preference heterogeneity, interacting it with

observable demographics serves to identify the case when price sensitivity is correlated with the

same demographics. For example, when estimating demand allowing for flexible income effects,

we include the interactions of the above price differentiation instrument Zp with moments of the

income distribution:

ZP
jt =

∑
r

(
p̂rt − p̂jt

)2

, (26a)

ZD
jt = ZP

jt ⊗
{
inc10%t , inc50%t , inc90%t

}
. (26b)

We thus trace the demand manifolds using cost shocks, holding constant exogenous demand shifters

at different price levels. In Section 6.2, we explore the instrument’s performance in Monte Carlo

simulations.

In Section 6.3, we consider an additional identification strategy: when individual-level data

are available, we can use the purchases of consumers in different demographic groups to identify

price and non-price taste heterogeneity. For example, we match the model prediction of the purchase

propensity of customers in different income quartiles relative to a customer in the lowest income

quartile to their data equivalents. Thus, we target the underlying mixing distributions directly.

This identification strategy is valid provided there are no demand spillovers from consumers in

other similar markets (Waldfogel, 2003).

22Alternatively, one could construct prices non-linearly using firm first-order conditions as in Berry et al. (1999).
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6.2 Flexible Manifold Estimation: Monte Carlo Analysis

We now conduct a Monte Carlo analysis to demonstrate the validity of our identification strategy

and evaluate the potential for mis-specified demand systems to introduce biases in the economic

outcomes of interest, elasticity and curvature. We focus on a specification of preferences with income

effects specification but also apply the instrument in an empirical application with quasi-linear

demand below. Consider a setting with J=20 differentiated products sold by single-product firms

competing in prices for T =50 periods. Consumer indirect utility takes the following form:

ujlt = β0 + β1x
1
jt︸ ︷︷ ︸

Common Across
Consumers

+
K∑
k=1

(
β2,k + σX,kνik

)
x2jt,k︸ ︷︷ ︸

Idiosyncratic
Characteristic Tastes

− α · pjt · yλ−1
it︸ ︷︷ ︸

Idiosyncratic
Price Sensitivities

+ ξjt + ϵijt , (27)

where, as above, income effects decrease as λ moves from zero to one. In this specification, some

product characteristics are observed by the researcher ({x1jt, x2jt}) while others are only observed

by consumers and firms (ξjt). Valuation of the product attribute x1jt is common across individuals,

and we draw x1 independently from a uniform distribution. We model consumer preference

heterogeneity in product characteristics via x2jt with two elements (K=2) including a constant and

a uniformly-distributed product characteristic. As in Gandhi and Houde (2020), product attributes

(other than the constant) vary across time.23 Consumers, therefore, have preference heterogeneity

over the J inside goods as a category via the constant random coefficient and over variation in the

observable product characteristic across the J products and T time periods. We set β2 = 1 and

σX = 5 for k = 1, 2. We assume that the unobservable characteristic ξjt is distributed standard

normal. We model heterogeneous price sensitivity using the above approximation to the Box-Cox

transformation of outside good spending modulated by parameter λ. We assume that consumer

income yit is drawn from a log-normal distribution and parameterize these draws following Andrews,

Gentzkow and Shapiro (2017), generating market and time variation by allowing the variance of

income to vary.

Single-product firms choose prices simultaneously each period given their constant marginal

costs cjt. In the static oligopoly Bertrand-Nash equilibrium, period t equilibrium prices p⋆t , satisfy

the set of J first-order conditions for the firms:

p⋆jt = cjt − sj(δt, p
⋆
t ;σX , σp)×

[
∂sj(δt, p

⋆
t ;σX , σp)

∂p⋆jt

]−1

. (28)

Marginal costs are a function of product characteristics and cost shocks:

log cjt = γ0 + γ1 log x
1
jt + γ2 log x

2
jt + ωjt + ζjt (29)

23 In empirical applications, such as automobiles, this is due to product remodels, which the researcher treats as
exogenous to unobserved variation in demand via ξ. This is equivalent to allowing for exogenous product entry
and exit – a common assumption in the empirical literature.
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Table 1: Monte-Carlo: Parameter Estimates

Scenario α (varies) λ (varies) σx = 5 σ0 = 5 Coeff .Var MAB Corr .

True-Specification A.Bias RMSE A.Bias RMSE A.Bias RMSE A.Bias RMSE σα/α σ̂α/α̂ ε ρ (ε, ρ) (ε̂, ρ̂)

1: log–log 0.003 0.161 0.000 0.000 -0.006 0.072 -0.012 0.231 -3.81 -3.79 0.00 0.00 0.66 0.66

2: linear–linear 0.001 0.011 - - 0.015 0.090 -0.082 0.947 0.00 0.00 0.00 0.00 0.66 0.66

3: bc–bc 0.000 0.037 -0.001 0.024 0.006 0.079 -0.001 0.735 -0.57 -0.57 0.00 0.00 -0.47 -0.47

4: log–bc 0.331 0.379 0.005 0.006 -0.012 0.070 0.025 0.121 -3.81 -3.77 0.00 0.00 -0.47 -0.47

5: linear–bc -0.031 0.048 -0.060 0.085 0.006 0.091 0.093 1.109 0.00 -0.11 0.00 -0.01 -0.44 -0.43

6: bc–log -15.514 15.612 - - 0.851 0.947 -2.211 2.218 -0.57 -3.77 0.55 -0.69 -0.44 0.63

7: bc-linear 0.248 0.248 - - 0.015 0.091 -0.272 0.987 -0.57 0.00 -0.16 0.22 -0.44 0.43

Notes: The first column indicates the true data-generating process and the researcher’s assumed specification of the price-income
interactions. The next three (double) columns report the average bias (A.Bias) and root mean standard error (RMSE) of the
income parameter λ and drivers of the idiosyncratic characteristics tastes using 1, 000 replications for each scenario. The price
coefficient, α, varies for each replication to ensure that ε = 2.5. The attribute random coefficients σx and σ0 (constant)
are both set to 5. Column “Coeff .Var” reports the coefficient of variation of the distribution of price responsiveness of
the data-generating process and the estimated model. The remaining set of columns report the coefficient of variation for
idiosyncratic prices-sensitivity parameters (αi), the median average bias (MAB) for average product elasticity and curvature
(ε, ρ), and the average correlation between product-level elasticity and curvature (corr(εj , ρj)).

We set all γ parameters equal to 1 and draw cost shocks {ωt, ζt} from standard normal distributions.

The researcher observes ωt, which identifies the distribution of price sensitivity. We generate pricing

equilibria in the true data-generating processes by selecting α and β0 so that the average own-price

elasticity is 2.5 with a 20% aggregate inside share for each simulation.

We consider the objective of a researcher who estimates consumer demand given observed

prices, quantities, and ω cost shocks following the best practices outlined in Conlon and Gortmaker

(2020). The researcher also specifies the supply side as in Berry et al. (1999) and correctly specifies

the outside option and the distribution generating the random coefficients for product characteris-

tics νi. The researcher, however, may incorrectly model income effects and, hence, the distribution

of price-sensitivities, as in Section 4.3. This Monte Carlo analysis aims to investigate the success of

an empirical demand model with a flexible Box-Cox power transformation of outside good spending

at identifying and recovering the true demand curvature underlying the data-generating process.

We consider three data-generating processes: we simulate demand and cost data assuming

that (1) λ = 0, as in the original BLP specification; (2) λ = 1, resulting in quasi-linear demand;

and (3) λ = 0.7, an in-between case with weaker income effects than case (1): the distribution of

αi is compressed, with a coefficient of variation of only 0.56, relative to 3.57 for the case of λ = 0.

In the following, we denote case (1) as ‘log’; case (2) as ‘linear’; and case (3) as ‘box-cox’ or ‘bc’.

With these three data sets, we then estimate seven specifications. In scenarios (1)-(3),

we specify the demand model correctly and verify that we can recover the underlying preferences

using the above instrumentation strategy. In scenarios (4) and (5), we specify general ‘box-cox’

preferences to recover the simpler ‘log’ and ‘linear’ preferences. Lastly, in scenarios (6) and (7) we

investigate model misspecification by using either a ‘log’ or a ‘linear’ demand model in estimation

to recover ‘box-cox’ preferences.
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Discussion of Results. We present the parameter estimates in Table 1 for seven distinct sce-

narios. In general, across curvature targets, the estimation succeeds at recovering the underlying

parameters when the researcher’s preference specification coincides with the true underlying data-

generating process, i.e., Scenarios (1)-(3), consistent with Gandhi and Houde (2020) and Conlon

and Gortmaker (2020). The estimates of elasticity (market power), curvature (pass-through), and

their correlation are consistent with the true quantities in the data.

In Scenarios (4) and (5), the researcher models consumer price-sensitivities flexibly using

a Box-Cox transformation of outside expenditure and estimates the income parameter λ. The

estimates of the Box-Cox model accurately estimate λ and the random coefficients of product

attributes when the underlying preferences include a logarithmic function of income, although it

overestimates the average price responsiveness α. We also observe that Box-Cox model accurately

recovers the distribution of price sensitivity (columns labeled ‘Coeff. Var’), as well as the elasticity-

curvature pairs.

Scenarios (6) and (7) address misspecification biases of imposing particular price-income

interactions when the true data-generating process is Box-Cox. Scenario (6) assumes the logarithmic

transformation of outside good spending, while Scenario (7) assumes quasi-linear preferences of

Nevo (2001). The assumed logarithmic specification leads to a particularly large misspecification

bias in all estimated parameters. The large positive average bias for the random coefficients on the

characteristic, σx, leads to greater substitution within inside products than the true data, while

the average bias of −2.2 for the constant random coefficient indicates greater substitution to the

outside option than the true data. Not surprisingly, the economic implications are significant as

the average estimated elasticity is −1.95, or 0.55 points less elastic than the true data-generating

process, while the average estimated curvature is 0.69 points above the true data-generating process.

The researcher, therefore, would overestimate both market power and pass-through. Moreover,

specifying log preferences ex-ante amounts to imposing a different rate of change of the demand

elasticity with income from the true relationship under Box-Cox preferences, leading to much greater

heterogeneity in price sensitivity than the underlying data. Such a bias has consequences for welfare

calculations, especially since solving for changes in consumer surplus requires accounting for income

effects. If the researcher assumes that preferences are quasi-linear, instead, as in scenario (7), the

estimated elasticity of −2.66 understates firms’ true market power while the estimated curvature

is 0.22 points below the true data, indicating the estimated model will under-predict the firm

pass-through.

The final two columns of Table 1 demonstrate that misspecification impacts the distribution

of estimated elasticity-curvature pairs among products. Looking across the different data-generating

processes, we observe that the shape of the distribution of price sensitivities via the income

distribution determines the relationship between demand elasticities and curvature, i.e., , the

demand manifold. Imposing specific distributions of price sensitivities – Scenarios (6)–(7) – results

in a flipped sign of the correlation between product-level elasticities and curvatures, or the slope

of the manifold, leading to a mischaracterization of the relationship between market power and
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Figure 9: Competition and Pass-Through Rates
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Notes: Figure presents Monte Carlo results across equilibria of median demand curvature. We generate each equilibrium
following the environment discussed in Section 6.2 for the Box-Cox utility specification where λ∈ [0, 1]. For each market t in
each equilibrium, we solve for the median (across 20 products) demand curvature. “Monopoly” represents the pass-through
rate of a single-product monopolist, e.g., (4). “Oligopoly” is the median pass-through rate for each market t in each
equilibrium generated by a 10% increase in marginal costs. The shaded region reflects the 95% confidence interval.

pass-through among the products. This could have large consequences for evaluating the economic

effects of mergers, cost changes, taxation, or tariffs, particularly for different consumer and firm

types.

Competition, Demand Curvature, and Pass-through. Our graphical illustrations of the

demand manifold relied on the monopoly case, where the connection between demand curvature

and pass-through is straightforward. However, this connection is less clear in empirical settings

where firms offer asymmetrically differentiated products, as in our empirical application below.

In this section, we use the Monte Carlo environment to compare monopoly pass-through

(i.e., assuming, for each product, that dp
dc = 1

2−ρ) with pass-through in our simulated 20-firm

single-product environment. We use the Box-Cox indirect utility and vary λ to generate equilibria

of varying degrees of demand curvature. For each simulated equilibrium, we calculate the average

pass-through in two ways: First, under the assumption that each firm’s pass-through rate is that

of a monopolist and under the actual market structure, and second by solving for equilibrium pass-

through rates due to the introduction of a common 10% increase in marginal costs. We construct the

average “oligopoly” pass-through rate as the simple average of equilibrium product pass-through

rates. We then illustrate the effect of competition on the connection between pass-through and

demand curvature by plotting the “monopoly” and “oligopoly” pass-through conditional on demand

curvature (Figure 9).

Competition pushes equilibrium pass-through towards one, thereby muting the upward

pricing pressure generated by the change in marginal costs. The increase in the common cost leads
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to both direct and indirect pass-through effects. The price of a product always increases with

its own cost. This is the direct effect captured by monopoly pass-through. The indirect effect

collects substitution effects induced by price changes of other products similarly affected by the

cost increase. The net effect thus depends on “how far” a particular product is from its closest

substitutes in product space.24

The Monte Carlo evidence thus points to the advantages of employing a flexible specification

of consumers’ price sensitivity in recovering unbiased elasticities and curvatures from the data

and illustrates the continued link between curvature and pass-through in settings beyond the

monopolist cases we considered above. As competition attenuates pass-through towards complete

pass-through, however, the importance of allowing for flexible pass-through estimation in assessing

policy outcomes of interest is ultimately an empirical question. We, therefore, conclude this section

with an application.

6.3 Flexible Manifold Estimation: Ready-To-Eat Cereal

In this section, we investigate the implications of specification bias by evaluating the consumer

welfare implications of uniform pricing in the ready-to-eat cereal market. Recent empirical work

(Adams and Williams, 2019; DellaVigna and Gentzkow, 2019; Hitsch, Hortaçsu and Lin, 2021)

highlights the infrequent use of fine market segmentation strategies by retailers in similar consumer

packaged goods despite the increasing availability of detailed data that might facilitate such prac-

tices. This work evaluates explanations for the lack of customized pricing, including frictions, such

as managerial costs to optimizing pricing, and the more limited profit gains to segmentation under

oligopoly.

Our objective here is different: we aim to assess the contribution of demand specification

to conclusions about the consumer welfare consequences of targeted pricing, and the role of the

estimated curvature.Aguirre et al. (2010) establish the connection between aggregate welfare gains

from third-degree price discrimination and curvature, building on work by Robinson (1933) and

others which showed that third-degree price discrimination enhances aggregate welfare only if it

increases aggregate output. Along the way, we assess differences in estimated substitution and cost

pass-through implicitly introduced by the researcher’s functional form assumptions.

Demand Curvature and Price-Discrimination. Consider the case of a single-product monop-

olist who sells to two different markets but produces with a common cost function. Let p denote

the uniform price and {pw, ps} the profit-maximizing market-specific prices for the “weak” and

“strong” markets, respectively, where pw < p < ps. Aguirre et al. (2010) show that uniform pricing

increases consumer welfare if the demand function in the strong market is at least as convex as

that in the weak market at the uniform price, or, in terms, of curvature, ρw(p) < ρs(p). Moreover,

24See Footnote 6. Häckner and Herzing (2016) use these same arguments to show the difference in incidence in a
monopoly and a multi-product oligopoly. Frieberg and Romahn (2018) illustrate how the wedge between the two
lines of Figure 9 varies with the ownership structure using the Swedish beer industry as a case study.
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the marginal welfare effect of uniform pricing decreases the difference between demand curvature

in the “weak” and “strong” markets. This indicates that the distribution of demand curvature,

particularly its variance, is important in evaluating the welfare implications of uniform pricing.

RTE Cereal Data. We use scanner data from the marketing company IRI from 2007 to 2011. For

a set of cities, we observe cereal revenue and price at the universal product code, store, and week,

together with brand, parent company, package size, and product characteristics, such as the types of

grain used to produce the cereal. For two markets, Eau Claire, WI, and Pittsfield, MA, we observe

consumer-level panel data on weekly grocery shopping trips and record cereal purchases and prices

paid by an average of 3,700 consumers each week. These panels include customer demographic

information within a two-mile radius of each store location.25

Table 2 presents two sets of motivating data moments based on the consumer panel. In the

left panel, we focus on households that purchase cereal and summarize spending across the income

distribution by calculating the average price paid among households in each of the top three income

quartiles relative to those in the bottom income quartile among households that purchase any cereal

variety. This provides evidence of heterogeneity in price sensitivity across the income distribution.

We observe that high-income (top-quartile) households choose much more expensive cereals than

other income quartiles. This suggests these consumers are much less price-sensitive.

Table 2: Evidence of Non-linear Consumption Patterns

Price-Sensitivity Non-Price Characteristics

Moment Data Moment Data

E[Price|IncomeQ2]/E[Price|IncomeQ1] 1.0022 E[Buy|IncomeQ2]/E[Buy|IncomeQ1] 1.0849
E[Price|IncomeQ3]/E[Price|IncomeQ1] 1.0115 E[Buy|IncomeQ3]/E[Buy|IncomeQ1] 1.2161
E[Price|IncomeQ4]/E[Price|IncomeQ1] 1.0524 E[Buy|IncomeQ4]/E[Buy|IncomeQ1] 1.3350

The right panel shows the relative probability that a customer buys any cereal among house-

holds in the top three income quartiles relative to the bottom. There is significant heterogeneity in

the base taste for cereal across the income distribution. We observe that households in the third

and fourth income quartiles are much more likely to buy cereal than the first and second quartiles.

To capture the features of the shape of demand that generated the RTE data, we provide flexibility

in the mixing distributions among income, price sensitivity, and non-price characteristics to match

these moments.

Demand Specification. We abstract from store choice and represent consumer i’s choice of which

product j to purchase at store l in week t using the quasi-linear indirect utility in Equation (13).

We include, as a product characteristic, the sugar content of product j and allow preferences for

sugar content to vary with the consumer’s observed demographics Dil (the presence of children)

and income yil, as well as an unobserved preference shifter νil that we assume to be distributed

25See Appendix E for a more in-depth discussion of the data.
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standard normal. We allow for the same heterogeneity in the valuation of the outside good to

capture systematic differences across consumers in the overall taste for cereal, part of which may

correlate with household demographics.

The above analysis shows that demand curvature follows directly from the distribution

of heterogeneous tastes and we introduce two ways to model them flexibly. First, we allow

demographics to flexibly enter the price coefficient α⋆
i . The presence of kids shifts price sensitivity

α⋆
i linearly, but we follow Nevo (2001) in accommodating a non-linear effect of household income

on price sensitivity, as prior work has found sizable differences in price elasticities across low- and

high-income consumers in the RTE market. Note, however, that in a quasi-linear model, such

patterns do not represent income effects; they simply capture differences in purchase behavior by

consumers of different income levels. There are several ways of introducing such flexibility in α⋆
i .

We found that leveraging the Box-Cox transformation provides greater flexibility with minimal

computational burden.26 As in Equation (20), we thus allow the power parameter λ to reflect

differences in price sensitivity between low- and high-income consumers:

y
(λp)
il =


yλ

p

il − 1

λp
, if λp > 0 ,

ln
(
yil
)
, if λp = 0 .

(30)

A nice feature of the Box-Cox transformation is that it nests common empirical applications. A

power parameter of λp = 1 corresponds to a linear effect of income on price sensitivity, and λp = 0

denotes the case of log income, but the transform can also accommodate a convex relationship

between income and price sensitivity with λp > 1. The final price coefficient that we specify is

α⋆
i = − exp(α+ πpy

(λp)
i + πk

1
kids
i ). (31)

where the exponential operator is useful to guarantee downward-sloping demand for all consumers.

Our second approach to introducing flexibility again uses a Box-Cox transform of the income

distribution but this time to modulate the degree to which high- and low-income consumers choose

whether to buy one of the J RTE cereals or the outside option; i.e.,

y
(λc)
il =


yλ

c

il − 1

λc
, if λp > 0 ,

ln
(
yil
)
, if λc = 0 .

(32)

From Section 4, we know that allowing for flexibility in the price sensitivity allows for curvature

(and pass-through) to exceed unity while allowing for flexibility in non-price attributes decreases

26One might allow price sensitivity to differing by income bin or sieve estimation ( e.g. Wang, 2022). In Monte Carlo
experiments, however, we found that both approaches implicitly introduced discrete customer types into the mixing
distribution, thereby limiting the shape of the mixing distributions and leading to elasticity-curvature pairs, which
deviated substantially from the true shape of demand.
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curvature. By focusing on the income distribution, we show how flexibility can be introduced in a

single demographic to allow movement in what the estimated model will allow. Providing flexibility

on other demographics follows directly and is only limited by the availability of identifying data

moments.

We rely on this specification of preference heterogeneity, together with logit shocks εijlt to

consumer i’s utility from product j, in calculating the probability that consumer i purchases product

j in market l in period t, sijlt, as in Equation (8). We derive aggregate demand for product j in

each store location by integrating over the distributions of observable and unobservable consumer

attributes Dil, yil, and νil, denoted by PD(Di), Py(yi), and Pν(νi), respectively, and scaling the

market share for product j in market l at time t with the market’s size:

sjlt = Mlt

∫
νl

∫
Dl

∫
yl

sijltdPy(yi)dPD(Di)dPν(νi) . (33)

In deriving the product’s aggregate demand, we follow Backus, Conlon and Sinkinson (2021) in

relying on an estimate of weekly store traffic as the potential market size Mlt. To capture variation

in-store traffic across weeks, we rely on milk and paper towel purchases, the two largest product

categories in the IRI data, and project weekly cereal sales on weekly milk and paper towel purchases.

We then scale predicted cereal purchases such that the predicted average outside option share

across stores matches the share of shopping occasions that do not include cereal purchases in the

IRI micro-data panel.

Estimation. We employ a standard Generalized Method of Moments (GMM ) estimator. We

partition the parameter space into (θ1, θ2) where the first set of parameters govern exogenous

variables, which enter consumer indirect utility linearly, while the second set, including λ, enter non-

linearly. We augment data with the consumption micro-moments (Petrin, 2002; Berry, Levinsohn

and Pakes, 2004) similar to Grieco, Murry and Yurukoglu (2021) and follow Backus et al. (2021)

in estimating preferences without imposing supply-side aggregate orthogonality conditions. We

also include fixed effects at the brand and market (city-week) level. The structural errors are then

brand-market-week demand shocks, such as increased demand for Cheerios in a particular city and

week.

The GMM estimator exploits the fact that at the true value of parameters θ⋆ = (Σ⋆,Π⋆, λ⋆),

the demand instruments (ZD) are orthogonal to the demand-side structural errors ξ(θ⋆), i.e.,

E
[
ZD′

ξ(θ⋆)
]
= 0, so that the GMM estimates solve

θ̂ = argmin
θ

{
g(θ1, θ2)

′Wg(θ1, θ2)

}
where g(θ1, θ2) =

[
gD(θ1, θ2)

gM(θ1, θ2)

]
(34)

and gD(θ1, θ2) represents the orthogonality conditions of interacting the structural errors with

instruments while gM(θ1, θ2) represents the squared distance between micro-moments implied by
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the model at guess (θ1, θ2) and the empirical micro-moments. The estimator is valid provided W

is a positive, semi-definite weighting matrix.27,28

Our estimates rely on the following instruments. We identify the characteristic random

coefficient for sugar content using the differentiation IVs of Gandhi and Houde (2020). The intuition

here is that exogenous variation in the availability of products similar in sugar content increases

substitution for a given product. We similarly identify the random coefficient on the outside option

using the total number of cereal products carried in-store l in week t. These instruments derive

from the available variation in the product set discussed in Appendix E.

Our instrumental variable for price relies on cost data for different grains and sugar sweet-

eners to capture time-series cost shocks that vary by brand but are common across geographic

markets. This accounts for the fact that a brand is usually produced in a single factory and

shipped to stores.29 We generate predicted prices by projecting prices on these input commodity

prices interacted with “type of grain” used in the production of the cereal, sugar content (grams

of sugar) interacted with the price of sweeteners, and exogenous product characteristics. Like

Backus et al. (2021), we found a Random Forest model to be more effective than a linear projection

in approximating the nonlinear effects of cost changes reflected in firms’ optimal prices. Given

the predicted price, we generate a differentiation instrumental variable (Zp) that captures the

substitutability of products in “price-space”.

Identification of the mean price coefficient (α) comes via p̂ (i.e., through exogenous cost

shocks to the commodity prices, particularly sweeteners) while we identify the coefficient of price

interacted with income (πp) and the Box-Cox transform parameters (λp, λc) in part using the

interaction of the price differentiation instrumental variable with moments of market l’s income

distribution:

ZD
t = Zp

t ⊗
{
1, %kids, incX%

lt

}
, (35)

where incX%
lt corresponds to the Xth-percentile store l’s fitted household income distribution yl; we

consider average income quartiles. The interaction of predicted price and percentiles of the income

distribution allows us to identify the shape of the distribution of price sensitivity – a feature

generated by the Box-Cox parameter λ.

27As the instruments come from different data sources, the weighting matrix is block-diagonal. We compute the
weighting matrix for the aggregate orthogonality moment conditions using the standard 2-step process. We
construct the optimal weighting matrix for the micro-moments by bootstrapping the IRI panel data with re-
placement for each sample constructing the corresponding micro-moments, and inverting the covariance matrix of
the bootstrapped sample (Gourieroux, Monfort and Renault, 1993).

28We solve (34) using first the aggregate demand instruments (ZD) to find an initial estimate θ̂ and then generate an
approximation to the optimal aggregate instruments following Berry et al. (1999), Reynaert and Verboven (2013)
and Conlon and Gortmaker (2020).To increase the likelihood of achieving a global minimum, we employ the Knitro
Interior/ Direct algorithm suggested by Dubé, Fox and Su (2012) starting from several different initial conditions.

29We found that the distances between stores and the factory interacted with diesel fuel prices yielded small
and insignificant point estimates in a simple first-stage price regression, so we do not include fuel prices in our
specification.
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As λp regulates the distribution of price-sensitivity across consumers and, therefore, con-

sumption patterns among low- and high-income consumers, identification comes from the likelihood

that consumers buy inexpensive versus expensive varieties conditional on income. For example,

when λp = 1, marginal differences in price sensitivity across income levels are uniform. Hence,

the predicted average price of the chosen product changes uniformly across income groups, all-

else-equal. When λp = 0, we observe that small differences in income will yield very different

consumption sensitivities to price. We would, therefore, observe in the data that the average price

paid between consumers across the lowest income groups would look very different while the average

price paid among the highest income groups would change little. The opposite is true for the case

when λp > 1 as the gradient in the average price paid across low-income consumers is flat while

we observe a large gradient across high-income consumers. At the same time, the added flexibility

of the Box-Cox transform does not preclude, for example, finding that wealthy consumers are less

price-sensitive than poor consumers. The sign of the price interaction, πp governs such relationships.

A similar argument holds for the Box-Cox transform of income, which we interact with the term

πc to regulate the degree to which high- and low- customers are more or less likely to purchase one

of the J RTE cereal products versus the outside option all else equal.

Additional identification comes from using the IRI panel data to construct micro-moments

that are particularly useful in identifying differences in demand which are correlated with demo-

graphics, including income.30 We include (1) the average price paid across the top three income

quartiles (relative to the first income quartile) among households that purchase any cereal variety

and (2) whether a customer buys a cereal variety across income quartiles. We also include as

micro-moments the correlation between price and whether the family has kids to identify the effect

of the presence of children on price sensitivity. These moments aid in identifying πp, πc, πk, λp, λc

and therefore aid in identifying the price-sensitivity and willingness-to-pay distributions in the

underlying consumer population.

Finally, we allow for substitution among the 41 RTE cereals in our sample to be driven

by observable customer characteristics as well as unobservable (to the econometrician) taste het-

erogeneity for sugar (σs) and for RTE cereals (σc) generally. The former is identified via the

(exogenous) introduction of added sugar cereals in a market. The latter is identified via remaining

unexplained variation in the customer’s purchase of any cereal.

Results. We consider three versions of the model: one where we allow preferences to vary with

the distribution of income in a flexible way; i.e., we estimate {λp, λc} and the remaining two as

specifications where we use log-income (i.e., λ = 0) and income (i.e., λ = 1) as proxies for how

preferences for RTE cereal and price sensitivity vary with customer income. The GMM estimator

and instruments are common across all specifications in order to make the results comparable. We

30The IRI micro data applies for a subset of cities so we only generate model micro-moments for these cities to ensure
the moments are comparable.
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Table 3: IRI Ready-To-Eat Estimation Results

Parameter Flexible Income Log-Income

Box-Cox Transform (λ)

Income-Constant (λc) 1.3970 - -

(0.1434)

Income-Price (λp) 1.7287 - -

(0.1151)

Price (α) 2.4069 1.8632 1.9103

(0.0341) (0.0212) (0.0198)

Random Coefficients (Σ):

Constant 1.8448 2.6593 6.9369

(0.2287) (0.1268) (0.1752)

Sugar 0.7276 0.5909 0.1143

(0.1129) (0.1189) (6.1729)

Demographic Interactions (Π):

Income-Constant -0.0543 0.4579 1.2056

(0.066) (1.0938) (1.4836)

Income-Price 0.0260 -0.4435 -0.7644

(0.0121) (1.0535) (1.0195)

Kids-Constant 0.5387 0.7624 1.7556

(0.3035) (0.1909) (1.0419)

Kids-Price -0.2432 -0.3320 -0.3453

(0.0358) (0.0369) (0.0386)

Kids-Sugar 0.9136 1.1020 1.2167

(0.0965) (0.1051) (0.1096)

Implications:

- Elasticity 1.93 1.91 1.88

- Curvature 1.17 1.12 1.07

- Diversion to Outside Good 0.48 0.39 0.18

Notes: Estimates (standard errors in parentheses) based on IRI scanner data from 2007
to 2011. See Appendix E for further information regarding the data set. The sample
amounts to 85,829 brand-chain-week observations. GMM estimates include brand and
market (city-week) fixed effects. Estimated models include the same set of identifying
GMM and cost instruments (commodity prices) discussed in Section 6.3. All statistics
under “Implications” correspond to the brand-store-week average. Source: Authors’
calculations.

also consider an unreported simple multinomial logit specification to provide a base case. Table (3)

presents parameter estimates based on a set of N=1000 simulated agents per market.

We find that the estimated parameters across models are reasonable. For example, we

observe downward-sloping demand for all model specifications and find that consumers become less

price-sensitive as their income grows. Households with kids are more price-sensitive than households

without kids, but they are more likely to buy any cereal, especially high-sugar cereal (Kids-Sugar

> 0).
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However, matching the price gradient across household income requires a transformed

income distribution (λ̂p=1.7), and our estimates enable us to reject log-transformed income (λp=0),

which is the prevailing approach for modeling price-income interactions in the literature (e.g., Nevo,

2001) as well as using raw income (λc,p=1). We also observe that allowing for flexibility in the base

preference for cereal across the income distribution (i.e., the value of RTE cereal) is important, as

we again reject using income in linear or log forms as proxies for heterogeneity in such non-price

preferences.

All three mixed logit models generate similar estimates for the demand elasticity, while

the MNL model generates more elastic demand. Our flexible approach generates demand estimates

with curvatures that are larger on average and more dispersed than the other models. These results

imply greater (theoretical) firm price responses to a change in marginal cost. Finally, our flexible

model predicts less diversion than those using income in linear or log forms. This result follows

directly from the normally distributed base taste for cereal, which is precisely estimated in all three

models but larger in the models with income in linear or log forms (2.7 and 6.9, respectively).

The identification of this random coefficient stems in part from the micro-moments. In both

restricted models, the estimator turns to unobserved variation in taste for RTE cereal to match the

micro-moments.31 As a result, the estimated models have substantially greater substitution than

our flexible model. As the flexible model nests the restricted model, we conclude that these ex-ante

restrictions introduce a specification bias that results in substitution patterns that are too large.

Discussion. What explains these differences in curvature and substitution but not elasticity? In

Table E.1, we present the micro-moments generated by each model specification. We find that

all mixed logit demand specifications can match the non-price moments (bottom two panels),

but that additional flexibility is needed to match how the expected price each customer pays for

RTE cereal changes as their income increases. In the data, we observe the average price paid by

customers in the second income quartile is 0.2% greater than the average price paid by customers

in the first income quartile and that this increases to 5.2% for customers in the fourth income

quartile. Neither the log income nor the income models can match this progression because both

unnecessarily constrain the mapping of customer income into price sensitivity. In contrast, the

flexibility of the Box-Cox transform allows the model to generate similar consumption patterns

across the income distribution, which, in turn, yields different estimates of demand curvature.

Moreover, our results again demonstrate that looking at estimated demand elasticity is not enough

if the researcher is interested in research or policy questions that involve firms that may adjust their

prices strategically. Put differently, two models can generate similar demand elasticity estimates

but imply different results to important questions.

Turning to substitution, the primary driver for using mixed logit models has historically

been to generate “reasonable substitution” patterns. Our estimation results indicate that the

distributional assumptions researchers have heretofore thought innocuous could be driving the

31See Table E.1 in Appendix E.
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substitution patterns these estimated models deliver. Our results demonstrate that providing

flexibility in these distributions is therefore of first-order importance for a variety of empirical work

(e.g., estimates of market power and antitrust) to keep a healthy distance between assumptions

and results. A nice feature of our identification strategy is that a researcher can look at how price

sensitivity and consumption patterns vary across the distribution of demographic attributes before

estimating a model to assess whether – and where – to provide additional flexibility.

Estimated Demand Manifolds. We present estimated curvature-elasticity pairs in Figure 10.32

We observe that moving from a multinomial to a mixed logit model leads to greater variation in

estimated product curvature-elasticity pairs. We find substantial variation in estimated demand

elasticities when using income linearly in the price interaction (bottom-left panel), while both dis-

persion in elasticity-curvature pairs and average curvature drop under the log income specification

for α⋆
i , reflecting the lower variance and skewness of the log-adjusted distribution.

Figure 10: IRI Breakfast Cereal: Elasticity and Curvature Estimates
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Figure Notes: Dots represent the point elasticity and curvature estimates for each observation in the sample with the silver
dot corresponding the the average elasticity and curvature estimates.

32See Appendix E, Table E.2 for moments of these distributions.
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High-income consumers are less price-sensitive than low-income consumers across specifica-

tions. The distribution of price sensitivity, however, varies significantly across specifications. The

estimated shape parameter (λ̂p=1.7) of the more flexible Box-Cox model implies that low-income

consumers are relatively uniform in their price sensitivity while high-income consumers are het-

erogeneous. This contrasts with the log-income (top-right) and the linear income (bottom-left)

models, where low-income consumers are more heterogeneous in their price sensitivity.

6.4 Marginal Costs and Pricing

We use the estimated demand models and an equilibrium pricing model to determine marginal

costs consistent with the observed prices. In line with the above descriptive evidence, we assume

that a single uniform price prevails in all stores affiliated with a given chain in a geographic market.

We treat chains as local monopolists. Under uniform pricing, each chain therefore solves:

max
pjt

∑
j∈J

[
(pjt − cjt)×

L∑
l=1

Mltsjlt

(
p, x, ξ; θ

)]
, (36)

where cjt denotes the marginal cost of product j in period t. We assume that differences in

marginal cost across stores within a chain due to transportation are negligible. We omit the period

t subscripts going forward to simplify the notation. Define as sj(p, x, ξ; θ) the aggregate demand

for product j,
∑L

l=1Mlsjl(p, x, ξ; θ). Profit maximization implies the following first-order condition

for product j, ∀j ∈ J :

sj

(
p, x, ξ; θ

)
+
∑
m∈J

(
pm − cm

)
× ∂sm

∂pj
= 0 . (37)

The final term ∂sm
∂pwj

is the response in product m’s quantity sold to a change in price and, through

the pricing rule, the retail price of product j. We transform the first-order condition into vector

notation, which enables us to separate costs from markups:

p = c+ [∆′]−1 × s
(
p, x, ξ; θ

)
︸ ︷︷ ︸

vector of $ markups

, (38)

where ∆ is the matrix of changes in quantity sold due to changes in retail price with element (k,m)

equal to ∂sk
∂pm

; i.e.,

∆ =


∂s1
∂p1

. . . ∂s1
∂pJ

...
. . .

...
∂sJ
∂p1

. . . ∂sJ
∂pJ

 . (39)

Given estimates of consumer demand (θ̂) together with price and quantity data, we recover product-

level marginal costs (ĉjt) for each chain via (38).
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6.5 Strategic Pricing of Firms

Empirical work has become increasingly focused on the strategic decision-making of firms. To what

extent does the demand specification affect our assessment of the role of firm decision-making in

economic outcomes we care about? In Figure 11, we demonstrate that different modeling approaches

generate different estimates of market power (as measured via the Lerner index), substitution (as

measured via diversion to the outside good), and cost pass-through. In Panel (a), we observe

that providing flexibility in modeling demand yields more elastic demand estimates (i.e., lower

Lerner indices) and greater substitution to the outside good. An alternative interpretation is that

locking in the distribution of demographic interactions ex-ante leads the researcher to overestimate

substitution. These results are due to the estimator in the Income and Log-Income models

increasing the value of the random coefficients (Σ) to bring these models in line with the data

moments.

Figure 11: Competition and Pass-through
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presents three different ways of measuring pass-through. “Monopoly” is the theoretical pass-through of a monopolist defined
as 1

2−p̂
. In “Oligopoly” we introduce a 10% marginal cost shock to each product and solve for the new pricing equilibrium in

each market. In “Aggregate” we assume a 10% increase in marginal cost across all products and solve for the new pricing
equilibrium in each market. For each counterfactual-model pair, we present median values in the figure.

In Panel (b), we present three pass-through measures. “Monopoly” is the theoretical pass-

through of a monopolist defined as 1
2−p̂ . In “Oligopoly” we introduce a 10% marginal cost shock to

each product and solve for the new pricing equilibrium in each market. In “Aggregate” we assume

a 10% increase in marginal cost across all products and solve for the new pricing equilibrium in

each market. For each counterfactual-model pair, we present median values in the figure.

In all mixed logit models, we observe the “Monopoly” and “Oligopoly” counterfactual

equilibria are close, which indicates that competition does not play a large role in dampening

pass-through in mixed logit models. This likely reflects the firms locating their products in pockets

of characteristic space that differentiate them from the competition. We see competition playing a
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greater role when there is an aggregate shock; higher costs for all products lead to movement up

the demand manifolds, leading to lower levels of curvature and pass-through. Moreover, fixing the

distributions of heterogeneous price sensitivity and product characteristics ex-ante leads to lower

estimates of cost pass-through regardless of shock.

6.6 Consumer Welfare Implications of Uniform Pricing

We conclude this section by using the estimated equilibrium models and corresponding estimated

marginal costs to assess the welfare implications of uniform pricing. We predict the optimal store-

specific price under the four demand specifications when consumers are captive to their chosen

store, as we assume in estimation. Similar to our analysis above, our goal is to assess how ex-ante

modeling decisions impact the estimates of the welfare effects of uniform pricing.

Firms set prices in our counterfactual equilibrium by solving the following profit-maximization

problem:

max
pjlt

∑
j∈J

[
(pjlt − cjlt)×Mltsjlt

(
p, x, ξ; θ

)]
. (40)

We identify beneficiaries of uniform pricing by evaluating changes in consumer welfare in moving

from the observed uniform to store-specific pricing via compensating variation, i.e., the amount

of income necessary to keep individuals in a given location indifferent between any counterfactual

set of prices p′ and the uniform ones p. Residents in location l are thus, on average, better off

under uniform pricing when compensating variation is positive. We calculate each household’s

compensating variation following Small and Rosen (1981) and aggregate across household demo-

graphics and unobserved preference heterogeneity in deriving aggregate compensating variation for

store l consumers. To make the welfare statistics more intuitive, we normalize each market by the

aggregate market-level RTE cereal spending we observe in the data.

Panel (a) of Figure 12 shows that uniform pricing increases aggregate welfare under all

four estimated demand specifications (i.e., CV > 0), though the magnitudes vary. Our Flexible

specification allows the distribution of price sensitivities to adjust according to the average price

paid across income quartiles. We find that the resulting skewness in this distribution has large

aggregate welfare effects compared to pinning this distribution down ex-ante. In particular, the

Flexible model implies that uniform pricing generates aggregate consumer welfare gains that are

3.6 and 9.7 times greater than the researcher would have found using raw income and log income,

respectively.

Not surprisingly, we also observe that high-income consumers benefit from uniform pricing

in our estimated models since these customers tend to be less price-sensitive than low-income

consumers. Since we require skewness in the income distribution to match the identifying data

moments, the Flexible model implies that the difference in elasticity between low- and high-income

consumers is greatest in this model. This difference translates to bigger welfare effects across
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income as evidenced by the 2.0 and 3.8 times larger estimated welfare benefit of uniform pricing for

high-income consumers relative to the models with income and log-income interactions, respectively.

We offer a placebo test in Panel (b). Our model has less scope for variation in price

sensitivity by family size, so we observe little variation in welfare effects for families of different

sizes across models. Any effect arises from the positive correlation between family size and income.

Alternatively, if we observed significant variation in consumption patterns across price and family

size (or any other observable demographic), adding this level of flexibility would make the model’s

welfare implications for these groups richer. Of course, the opposite would also be true if such

variation existed in the data and we instead chose to impose the demographic variation as a proxy

for heterogeneity in price sensitivity.

Welfare Implications. This empirical application aims to demonstrate how to estimate demand

with flexible distributions of price and non-price valuations and address the implications of allowing

this kind of flexibility. Figure 12 demonstrates both aggregate and distributional welfare implica-

tions. As equity is increasingly the focus of policy debates, robust estimation of distributional

effects is of first-order importance to evaluating alternative policy solutions.

Extending these Insights to Other Empirical Settings. Our focus in this paper has been to

identify the underlying primitives and mechanisms that determine the shape of demand in mixed

logit models. These insights, therefore, extend to any empirical application of discrete choice

demand. Our results for RTE cereal reflect consumption patterns in the RTE cereal data that are

consistent with a more skewed distribution of price sensitivity than a linear or log-linear function

of income accommodates. However, this may not be the case in a different empirical setting. This

Figure 12: Distributional Implications of Uniform Pricing
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connection between data, model, and results thus highlights the value of exploratory data analysis

of consumption patterns by demographic group, such as the price-income gradient we focus on.

7 Concluding Remarks

We have shown that the unit-demand mixed-logit model can accommodate a wide array of em-

pirically relevant elasticity-curvature pairs, thereby providing further evidence of the power of

the mixed-logit model as a demand framework and policy tool. We have also demonstrated how

different components of the demand specification contribute to expanding the set of attainable

elasticity-curvature pairs to better approximate the true shape of demand. This is useful as it both

aids in identification of the mixed-logit model and demystifies the mixed-logit model by enabling

the researcher to articulate the path from data to model to empirical results. In particular, our

theoretical and empirical results highlight the importance of modeling mixing distributions flexibly

to keep a healthy distance between assumptions and results.

Our empirical analysis of breakfast cereal serves as a useful proof-of-concept. It connects to

the motivating questions from Figure 1 and enables us to estimate the welfare impacts of common

demand shape restrictions. However, the advantages of using demand shape flexibility to estimate

the welfare effects of uniform pricing extend beyond consumer packaged goods. Consider the case

of healthcare. The 2010 Affordable Care Act (ACA) requires health insurers to set uniform prices

within “rating areas” defined by each state; hence, uniform pricing is by regulation rather than

by firm choice, as in ready-to-eat cereal. As a rating area comprises a collection of counties or zip

codes, it also contains a variety of customer types.33 Our work suggests that modeling customer

heterogeneity flexibly in this context is important in understanding the price, quantity, and welfare

effects of this uniform pricing regulation.34 Adding supply-side considerations to our framework

– such as menu costs or allowing marginal cost to be correlated with demand, as in the case of

healthcare – is another exciting area for further research.
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Mrázová, Monika and J. Peter Neary (2017): “Not So Demanding: Demand Structure and Firm Behavior,”
American Economic Review, Vol. 107, pp. 3835–3874.

Nadarajah, Saralees (2005): “A Generalized Normal Distribution,” Journal of Applied Statistics, Vol. 32,
pp. 685–694.

Nakamura, Emi (2008): “Pass-Through in Retail and Wholesale,” American Economic Review, Vol. 98, pp.
430–37, May.

Nakamura, Emi and Dawit Zerom (2010): “Accounting for Incomplete Pass-Through,” Review of Economic
Studies, Vol. 77, pp. 1192–1230.

Nevo, Aviv (1998): “Measuring Market Power in the Ready-To-Eat Cereal Industry,” Discussion Paper 6387,
NBER.

(2000): “Mergers With Differentiated Products: The Case of the Ready-To-Eat Cereal Industry,”
RAND Journal of Economics, Vol. 31, pp. 395–421.

(2001): “Measuring Market Power in the Ready-to-Eat Cereal Industry,” Econometrica, Vol. 69,
pp. 307–342.

Nocke, Volker and Nicolas Schutz (2018): “Multiproduct-Firm Oligopoly: An Aggregative Games Ap-
proach,” Econometrica, Vol. 86, pp. 523–557.

Petrin, Amil (2002): “Quantifying the Benefits of New Products: The Case of the Minivan,” Journal of
Political Economy, Vol. 110, pp. 705–729.

Poterba, James M. (1996): “Retail Price Reactions to Changes in State and Local Sales Taxes,” National
Tax Journal, Vol. 49, pp. 165–76.

Reynaert, Mathias. and Frank. Verboven (2013): “Improving the Performance of Random Coeffcients
Demand Models: the Role of Optimal Instruments,” Journal of Econometrics, Vol. 178.

Robinson, Joan (1933): Economics of Imperfect Competition, London, UK: Macmillan.

Saltzman, Evan (2019): “Demand for health insurance: Evidence from the California and Washington ACA
exchanges,” Journal of Health Economics, Vol. 63, pp. 197–222.

Small, Kenneth A. and Harvey S. Rosen (1981): “Applied Welfare Economics with Discrete Choice Models,”
Econometrica, Vol. 49, pp. 105–130.

Tebaldi, Pietro (2022): “Estimating Equilibrium in Health Insurance Exchanges: Price Competition and
Subsidy Design under the ACA,” Working Paper 29869, National Bureau of Economic Research.

Train, Kenneth E. (2009): Discrete Choice Methods with Simulation, New York, NY: Cambridge University
Press, 2nd edition.

Waldfogel, Joel (2003): “ Preference Externalities: An Empirical Study of Who Benefits Whom in
Differentiated-Product Markets,” RAND Journal of Economics, Vol. 34, pp. 557–68.

Wang, Ao (2022): “Sieve BLP: Sieve Blp: A Semi-nonparametric Model of Demand for Differentiated
Products,” Journal of Econometrics, p. forthcoming.

Weyl, E. Glen and Michal Fabinger (2013): “Pass-Through as an Economic Tool: Principles of Incidence
Under Imperfect Competition,” Journal of Political Economy, Vol. 121, pp. 528–583.

– 48 –



Appendix

A Elasticity and Curvature of Demand for Breakfast Cereal

Nevo (2000) specifies preferences as follows (ignoring market location and time indices):

uij = xjβ
⋆
i + α⋆

i pj + ξj + ϵij , i ∈ I, j ∈ J , ϵij ∼ EV1 , (A.1a)(
α⋆
i

β⋆
i

)
=

(
α

β

)
+ΠDi +Σνi , νi ∼ N(0, In+1) , (A.1b)

where xj is the (n×1) vector of observed product characteristics and pj is the price of (inside) prod-

uct j available in each market, J , with J = |J |. Payoff of the outside good is ui0 = ϵi0. There are

random coefficients of product characteristics, β∗
i and price responsiveness, α∗

i . Preferences might be

correlated with a d-vector of demographic traits Di through the (n+1)×d matrix Π of interaction

estimates that allow for cross-price elasticity to vary across markets with different demographic

composition. To further account for individual preferences over unobservable product attributes, νi

captures mean-zero, unobserved preference shifters with a diagonal variance-covariance matrix Σ.

Lastly, the idiosyncratic unobserved preference by consumer i for product j, ϵij , follows the Type-I

extreme value distribution across all products in J .

Table A.1: Breakfast Cereal: Price Related Estimates

Means Std. Dev. Demographic Interactions (πp) Manifold

Specification (α) (σp) log(Income) log(Income)2 Child ε ρ

[A] -62.7299 3.3125 588.3252 -30.1920 11.0546 3.62 1.06
(14.8032) (1.3402) (270.4410) (14.1012) (4.1226)

[B] -30.9982 2.0216 — — — 3.74 0.96
(0.9674) (0.9367) — — —

[C] -53.1367 — 444.7281 -22.3987 16.3664 3.60 1.08
(12.1023) — (209.6548) (10.7282) (4.7824)

[D] -30.8902 — — — — 3.74 0.96
(0.9944) — — — —

Notes: GMM estimates of parameters related to price sensitivity using simulated breakfast cereal data estimated via “best
practices” described in Conlon and Gortmaker (2020). The remaining parameters for product characteristics follow Nevo
(2001) and are included in each demand specification but are not reported. Robust standard errors are in parentheses.

We consider four alternative specifications:

[A] α⋆
i = α+

d∑
k=1

παkDi + σανi , (Nevo – Full Model) (A.2a)

[B] α⋆
i = α+ σανi , (Only Price Random Coefficient) (A.2b)

[C] α⋆
i = α+

d∑
k=1

παkDi , (Only Demographic Price Interactions) (A.2c)
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[D] α⋆
i = α , (No Price Interactions) (A.2d)

The estimation results of Model A are represented graphically in Panel A of Figure 1 in

the main text. We contrast it with a variant of Model D in Panel B that removes not only price

interactions but also product characteristic interactions.

B Choice Probability Distribution and Demand Manifolds

B.1 Moments

Because of the additive i.i.d. type-I extreme value distribution of ϵij , the individual i’s choice

probability of product j given by (8) is also the mean of an individual-specific Bernoulli distribution:

µij = Pij , (B.1)

which are functions of the vector of prices p that we omit to reduce clutter. The variance is:

σ2
ij = Pij(1− Pij) . (B.2)

And finally, the third central moment or non-standardized skewness is:

skij = Pij(1− Pij)
2 − P2

ij(1− Pij) = Pij(1− Pij)(1− 2Pij) , (B.3)

from where we obtain standardized moment or skewness (MacGillivray, 1986) as:

µ̃ij,3 =
skij
σ3
ij

=
Pij(1− Pij)(1− 2Pij)√

[Pij(1− Pij)]3
=

1− 2Pij√
Pij(1− Pij)

, (B.4)

where σ3
ij is the third raw moment of the individual choice probability distribution.

B.2 Moment Derivatives

We use the derivative of the choice probability (8) with respect to price repeatedly:

P′
ij =

∂Pij

∂pj
= f ′

ij · Pij(1− Pij) . (B.5)

The derivative of the variance with respect to price is:

∂σ2
ij

∂pj
=

∂Pij(1− Pij)

∂pj
= P′

ij(1− Pij)− PijP′
ij = f ′

ij · Pij(1− Pij)(1− 2Pij) = f ′
ij · skij . (B.6)

To conclude, we obtain the price derivative of skewness by differentiating the first equality in (B.3):

sk′ij =
[
(1− Pij)

2 − 4Pij(1− Pij) + P2
ij

]
·P′

ij =
[
(1− 2Pij)

2 − 2Pij(1− Pij)
]
·f ′

ij ·Pij(1−Pij) . (B.7)
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B.3 Demand Manifold

Price differentiate (9) and substitute (B.5) to obtain demand elasticity of product j with respect

to p:

εj(p) ≡ − pj
Qj(p)

· ∂Qj(p)

∂pj
= − pj

Qj(p)

∫
i∈I

f ′
ij ·Pij (1− Pij) dG(i) . (B.8)

Similarly, the inverse demand curvature of product j is:

ρj(p) ≡ Qj(p) ·
∂2Qj(p)/∂p

2
j

[∂Qj(p)/∂pj ]2
=

∫
i∈I

PijdG(i)×


∫

f ′′
ij ·Pij (1− Pij) dG(i)+∫ (

f ′
ij

)2
·[Pij (1− Pij) (1− 2Pij)] dG(i)


[∫

f ′
ij · Pij (1− Pij) dG(i)

]2 . (B.9)

Equations (10) and (11) follow after substituting (9), (B.2) and (B.3) into these expressions.

Combining elasticity and curvature we obtain the expression for the demand manifold (12):

ρj [εj(p)] =
p2j

ε2j (p) ·Qj(p)
·
[∫

f ′′
ij ·Pij (1− Pij) dG(i) +

∫ (
f ′
ij

)2 ·[Pij (1− Pij) (1− 2Pij)] dG(i)

]
.

(B.10)

C A General Mixing Distribution

Idiosyncratic demand sensitivity is modeled as α⋆
i = α+πϕi, where α is the mean slope of demand

and π captures the effect on price heterogeneity of preferences across individuals. We model draws of

individual types ϕi after the following three-parameter Asymmetric Generalized Normal distribution

(Nadarajah, 2005):

Prob
(
ϕ < x; ι, ζ, η

)
= ΦN (y) where =


−1

η
log

(
1− η(x− ι)

ζ

)
, if η ̸= 0 ,

x− ι

ζ
, if η = 0 ,

(C.1)

and where ΦN (·) denotes the cumulative distribution function of a standard normal. To avoid

an overparameterized model, we normalize the scale parameter ζ = 1, and η < 0 so that the

support of the distribution is (ι+1/η,∞). The distribution is right-skewed, mimicking a log-normal

distribution for η = −1 and converging to a normal distribution as η −→ 0. Furthermore, we center

the distribution around the mean slope:

E[ϕ] = ι− ζ

η

(
eη

2/2 − 1

)
= 0 , (C.2)
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so that:

ι =
1

η

(
eη

2/2 − 1

)
. (C.3)

The one-parameter Asymmetric Generalized Normal distribution can then be written as:

Prob
(
ϕ < x; η

)
= ΦN (y) where =


−
log
(
eη

2/2 − ηx
)

η
, if η ̸= 0 ,

x− ι

ζ
, if η = 0 ,

(C.4)

with mean, variance, and skewness:

µ[ϕ; η] = 0 , (C.5)

σ2[ϕ; η] =
eη

2/2
(
eη

2/2 − 1
)

η2
, (C.6)

µ̃3[ϕ; η] =
3eη

2/2 − e3η
2/2 − 2(

eη2/2 − 1
)3/2 . (C.7)

Figure C.1: Covering the Space with a Flexible Price Mixing Distribution

(a) Potential Price Mixing Distributions
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Notes: The left panel shows three specifications of the price random coefficient distribution. The right panel shows the
combinations of all structural parameters generating well-behaved solutions for (ε, ρ) in the sub-convex region.

Figure C.1 explores the implications of using this flexible mixing distribution for the price

random coefficient. In panel (a) we present three different variants of how the price mixing

distribution may look: ranging from standard normal to log-normal. We also consider an in-

termediate case that might represent a particular mixture of these two distributions. In panel (b)

we present the implications of this flexibility for covering (ε, ρ) space. As before, we focus our

attention on specifications ensuring sub-convexity of demand (light-shaded region). Panel (b) shows

that allowing for sufficient flexibility in the price mixing distribution expands the support of the
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parameters of interest and facilitates obtaining robust estimates (ε̂, ρ̂) by relaxing the constraints

that other distributions of price random coefficients might impose.

D Nonlinear Income Effects

Table D.1: Income Effects, Markups, and Pass-Through Rates

λ = 0 λ = 0.5 λ = 0.75 λ = 1

Elasticity (ε) 2.83 (0.26) 2.34 (0.48) 2.77 (1.01) 2.75 (2.05)

Curvature (ρ) 1.35 (0.08) 1.19 (0.07) 1.13 (0.05) 0.99 (0.01)

Markup (%) 44.41 (5.26) 46.25 (8.77) 44.48 (13.77) 48.12 (20.55)

Pass-Through (%) 178.99 (18.33) 145.91 (16.38) 117.90 (7.27) 99.41 (0.01)

Notes: Mean and standard deviations (in parentheses) of demand elasticity and curvature plus their implied price markup and
pass-through rate.

Figure D.1: Income Effects and Demand Manifolds (by Vehicle Origin)
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E Ready-to-Eat Cereal

Data. We use scanner data from the marketing company IRI from 2007 to 2011. For a set of

cities, we observe cereal revenue and price at the universal product code, store, and week, together

with brand name, parent company, and package size, as well as product characteristics such as the

types of grain used to produce the cereal. For two markets, Eau Claire, WI, and Pittsfield, MA,

we observe consumer-level panel data on weekly grocery shopping trips and record cereal purchases

and prices paid by an average of 3,700 consumers each week.

We restrict attention to products packaged in cardboard boxes (approximately 94% of total

revenue) and a sales rank in the top 20% of products (approximately 95% of total revenue, allowing

us to significantly reduce the product set from the original 1,022). We define a cereal product j as

the combination of brand and flavor (e.g., Honey Nut Cheerios). After aggregating across product

sizes, we obtain 41 products and construct a price per one-ounce serving for each by dividing total

revenue by the total number of servings.

To reduce computational complexity, we focus on stores in large markets with significant

geographic variation: Los Angeles (7.2% of total revenue), Boston (4.9%), Chicago (4.0%), Houston

(2.5%), Houston (2.5%), and Seattle (2.4%) as well as small markets Eau Claire (0.6%) and Pittsfield

(0.5%) which we include to leverage the micro-moments from the cities. Finally, we append to

these data nutritional information (i.e., content of added sugar, calories, protein, fat, sodium, fiber,

carbohydrate, potassium, and vitamins) attained via web-scrape. We also obtain time-series data

for commodity costs of corn, oats, rice, wheat, and sugar-sweeteners (e.g., high-fructose corn syrup)

from Quandl and the Federal Reserve Economic Data.

The raw store-level data include demographic information for customers living within a

two-mile radius of each store location. We focus on the presence of children in the household

and income. The demographic data for income is binned in discrete categories (e.g., the number

of customers with annual incomes between $25,000 to $29,999). We fit the binned empirical

distributions to beta distributions of the second kind to establish continuous income distributions in

each market; Appendix E illustrates the ability of the assumed beta distribution to fit the observed

categorical data. We use these fitted distributions, together with the share of households with

children, to construct simulated consumers who vary in income and the presence of children in the

household. We similarly generate a continuous income level from the recorded income categories

for the households in the microdata; we observe the presence of children in each participating

household directly.35

Motivating Evidence. We begin by addressing the prevalence of multi-store chains in the data.

In Figure E.1, Panel (a) we demonstrate that 74% of retailers in the data have more than one store

and that there is significant heterogeneity in the size of chains as measured by the number of stores

within each chain. In Panel (b) we explore income variation across the stores. We exploit the

35We ignore correlations between demographics, as the data do not report conditional distributions based on
demographics.
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store-specific income data and compare income across stores by calculating the standard deviation

in average income across stores within a chain. For example, a chain that has two stores where

each store is located in a geographic area with an average income of $50,000 will have a standard

deviation equal to zero, while a chain with stores in low-income and high-income locations will

have a positive standard deviation. We observe that chains do not appear to select locations of

similar incomes. If consumer price sensitivity varied systematically with income, these differences

in locations’ incomes suggest heterogeneity in price sensitivity among consumers shopping at the

chain. Moreover, this provides suggestive evidence that conditional on uniform pricing, demand

curvatures are likely to exceed one.

Figure E.1: Evidence of Multi-Store Chains
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DellaVigna and Gentzkow (2019) found that products in many consumer packaged goods

categories, including ready-to-eat cereal, are priced uniformly across stores within a chain. We see

similar behavior in our sample. We first explore product selection in our sample and note that

49.1% of stores sell at least one unit of each of the 41 products at some point during each year,

and 90.9% of stores carry (sell) at least 38 of the 41 products. This indicates that chains are not

separating consumer types across stores by using different product selections.

We test for uniform pricing using the share of variation in prices explained by chain fixed

effects – a similar test employed by Nakamura (2008), Hitsch et al. (2021), and DellaVigna and

Gentzkow (2019). We do so by looping through products and for each product regressing the average

price over weeks in-store s for product j, psj , on chain and city fixed effects. In our data, we find

median R2 values, across products, for chain and city fixed effects of 0.72 and 0.31, respectively.

As chain fixed effects explain a large share of the variation in the data, this suggests the presence

of uniform pricing whereas the relatively minor role of city fixed effects suggests less importance of

local market factors such as competition and consumer preferences.

Simulating Consumers. We construct the sample of simulated consumers for each market by

relying on the empirical distributions of the demographic attributes of presence of children in the

household and income. We use the IRI demographic supplement, which includes demographic

statistics for consumers within a two-mile radius of the store. We fit continuous market-specific
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distributions to the discrete distributions of income using generalized beta distributions of the

second kind to fit the empirical income distributions for each market l. McDonald (1984) highlights

that the beta distribution provides a good fit to empirical income data relative to other parametric

distributions. In Figure E.2 we compare the estimated cumulative distribution functions (dashed

lines) versus the binned data (dots) for a representative store.

Figure E.2: Estimating Income Demographics
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Notes: We compare the estimated income distribution (dashed lines) and the discrete
income distributions (dots) in the IRI data.

The IRI data do not have a time dimension so we assume demographics are stable across our

time period (2007-2011). Finally, we account for the unobserved preferences for product attributes

(νil) via Halton draws which Train (2009) demonstrated is an efficient method to efficiently cover

the space of unobserved preferences (νil). We then draw 1,000 individuals for each store to derive

the predicted probability of choosing product j numerically via Monte Carlo simulation.
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Additional Results.

Table E.1: Matching Consumption Patterns

Moment Data Flexible Income Log-Income MNL

E[Price|Kids]/E[Price|No Kids] -0.0033 -0.0022 -0.0034 -0.0032 0.0009
E[Price|IncomeQ2]/E[Price|IncomeQ1] 1.0022 1.0057 1.0119 1.0220 0.9929
E[Price|IncomeQ3]/E[Price|IncomeQ1] 1.0115 1.0257 1.0276 1.0290 0.9894
E[Price|IncomeQ4]/E[Price|IncomeQ1] 1.0524 1.0514 1.0404 1.0266 0.9793

E[Buy|Kids]/E[Buy|No Kids] 0.0927 0.0894 0.0919 0.0914 0.0033
E[Buy|IncomeQ2]/E[Buy|IncomeQ1] 1.0849 1.0300 1.0884 1.1414 0.9899
E[Buy|IncomeQ3]/E[Buy|IncomeQ1] 1.2161 1.1827 1.2110 1.2337 0.9900
E[Buy|IncomeQ4]/E[Buy|IncomeQ1] 1.3350 1.3007 1.3301 1.3277 0.9721

Corr[sugar,kids] 0.0827 0.0606 0.0683 0.0724 0.0010

Table E.2: Elasticity, Curvature,
and Flexible Demand

Flexible Income Log-Income MNL

Elasticity
- Mean 1.93 1.91 1.88 2.24
- Median 1.92 1.90 1.88 2.23
- Stand. Dev. 0.41 0.41 0.41 0.53
- 90% 2.45 2.42 2.39 2.92
- 10% 1.42 1.38 1.34 1.56

Curvature
- Mean 1.17 1.12 1.07 0.99
- Median 1.15 1.12 1.07 0.99
- Stand. Dev. 0.08 0.05 0.03 0.01
- 90% 1.28 1.19 1.09 1.00
- 10% 1.07 1.07 1.04 0.98
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