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1 Introduction

The absence of a sufficiently flexible multivariate distribution of counts has so far prevented the

full information estimation of multivariate count data models. Simple analysis such as seemingly

unrelated regressions, simultaneous equations models, or models with endogenous regressors re-

main mostly intractable whenever several endogenous counts are involved.1 In the absence of

such flexible joint distribution of counts, applied econometricians have turned their attention to

computing intensive models such as orthogonal polynomial series expansions, e.g., Cameron and

Trivedi (1998, §8.5), moment-based estimation methods, e.g., Gourieroux, Monfort, and Trognon

(1984), and more recently copulas, in particular in the field of financial econometrics, e.g., see Bien,

Nolte, and Pohlmeier (2011), Heinen and Rengifo (2007), or Nolte (2008). However, most models

available are difficult to extend beyond the bivariate case, and they fail to consider any effect of

unobserved heterogeneity other than the well known overdispersion of the distribution of counts.2

Furthermore, correlation between counts is generally assumed to depend on the same parameter

identifying overdispersion effects, therefore restricting it to be necessarily positive as the same

source of unobserved heterogeneity must explain simultaneously overdispersion and correlation.

Dealing with over and underdispersion is the main goal of most developments in the

single-equation count data regression models. Moving towards the multivariate case, the difficulty

consists in building a framework that allows for the most flexible correlation pattern possible

among counts. Cameron and Trivedi (1998, §8) best summarize the difficulties of estimating a

1 Windmeijer and Santos-Silva (1997) successfully deal with an endogenous count and an endogenous con-
tinuous variable while Hausman, Leonard, and McFadden (1995) address the case of an endogenous count and an
endogenous dichotomous variable.

2 It has long been recognized that the Poisson model is generally too restrictive when estimating univariate
count data regressions. Implicit to the Poisson model is the assumption of equidispersion of the distribution of
counts, which is customarily rejected by the data. Many models, such as the Negative Binomial regression, have been
suggested to address the existence of unobserved heterogeneity in the data that could explain the commonly observed
overdispersion but not the less frequent underdispersion of the distribution of counts. Hausman, Hall, and Griliches
(1984) even deal successfully with overdispersion in a univariate panel count data model.
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multivariate count data regression model. Kocherlakota and Kocherlakota (1993) present what is

perhaps the best known approach to deal with multiple and potentially correlated counts. They

derive a bivariate Poisson distribution resulting from the addition of a common Poisson component

to two independently distributed Poisson variables. The advantage of this approach —known as

trivariate reduction— is that it allows for Poisson marginal distributions, but it also includes a

necessarily positive correlation coefficient with a restricted range that characterizes the dependence

structure of the count variables. Similarly, Marshall and Olkin (1990) generate a multivariate count

data distribution from mixtures and convolutions of distributions of count events. The advantage

of this second approach is that it allows for the simultaneous existence of unobserved heterogeneity

that leads only to overdispersion and positive correlation of counts. Still, a serious limitation

of all these models is that correlation among counts are necessarily positive because there is a

single source of heterogeneity that explains simultaneously both the overdispersion of the marginal

distributions of counts and their correlation.3 In this paper I make use of the Sarmanov family of

distributions with double Poisson marginals to build a multivariate count data regression model

that is flexible in the sense that it can accommodate both over and underdispersion independently

of any correlation patterns among the counts.4

The Sarmanov count data regression model introduced in this paper has some remarkable

features that overcome most difficulties in extending the existing single-dimensional count data

models to multivariate environments. First, it can accommodate both over and underdispersion

of the distribution of counts, therefore addressing a far larger pattern of behavior induced by

3 The multivariate Poisson-gamma mixture model of the random effects model of Hausman et al. (1984, §3)
is a restricted version of the model of Marshall and Olkin (1990), while Gurmu and Elder (2000) and Winkelmann
(2000) suggest multivariate negative binomial models. In all these works, only overdispersion is allowed but in the
latter two cases, correlation is independent from dispersion, although still necessarily positive.

4 The double Poisson introduced by Efron (1986) is one of the few discrete univariate distributions that can
accommodate both over and underdispersion. Winkelmann (1995) builds a similarly flexible unidimensional model
but based on the continuous gamma distribution of latent waiting times that exploits the one-to-one relationship
between the properties of the hazard rate of the distribution of waiting times and the over/underdispersion of the
distribution of events that take place within an arbitrarily defined time interval.
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the existence of unobserved individual heterogeneity. Second, any correlation sign is allowed,

including the possibility of negative correlation among counts, thus reducing the possibility of

misspecification.5 Third, dispersion and correlation of counts depend on different parameters of

the model. This is an important property because it adds flexibility to the model by separating

the effect of unobserved individual heterogeneity and correlation among counts (again reducing

the likelihood of misspecification). Fourth, the model can be extended beyond the bivariate case.

Finally, the likelihood function can always be written in closed form and there is no need to use

simulation methods to obtain the parameter estimates.

The only drawback of the Sarmanov count data regression model is that in order to have

a properly defined multivariate distribution of counts, the range of the estimates of correlations is

effectively bounded by the value of the rest of the parameters of the model. The estimation thus

requires the use of constrained maximum likelihood methods. In order to deal with the possibility

that some of the parameters are on the boundary of these constraints I make use of rescaled

bootstrapping to obtain robust confidence intervals.

In this paper I study the pricing strategies of competing duopolists in the early U.S. cellular

telephone industry in order to evaluate whether the number of tariff options offered by competing

firms are strategic complements and the pricing practices of firms corresponds to a supermodular

game, e.g., Topkis (1998, §4) and Vives (1990), or if alternatively, firms use their pricing offerings

to differentiate themselves in attracting customers, e.g., Yang and Ye (2008).6

5 There are other models that allow for correlation among counts of any sign based on the bivariate
Poisson-lognormal distribution of Aitchison and Ho (1989), such as those of Hellström (2006), Munkin and Trivedi
(1999), or Riphahn, Wambach, and Million (2003). These models can only address the case of overdispersed counts
while estimation has to resort to simulation methods as the Poisson-lognormal mixture does not have a closed form
expression. Gurmu and Elder (2008) obtain a closed form expression only after considering a first order Laguerre
polynomial approximation to the bivariate distribution of unobservables. The Sarmanov regression model presented
in this paper can address both over and underdispersion separately from correlation.

6 The need to estimate joint demands of countable products or services arise in many environments such as
medical service, e.g., Munkin and Trivedi (1999) or Riphahn et al. (2003); job changes, Jung and Winkelmann (1993);
types of food, Meghir and Robin (1992); and recreational trips, Hausman et al. (1995), Hellström (2006), or Terza
and Wilson (1990).
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Back in the 1980s, cellular carriers implemented nonlinear tariffs by means of a menu of

self-selecting tariff options. In the absence of strategic considerations, carriers offered the number

of tariff plans that was optimal to screen a customer base with some degree of heterogeneity while

compensating for the costs of design and commercialization. Alternatively, offering numerous rather

than few tariff options might carry some strategic value and thus competitors may respond by

offering a similar number of tariff plans in order to match the strategy of competitors. A significant

positive estimates of the correlation among the count number of tariff plans offered supports the

view that the number of tariff options in the early U.S. cellular industry are strategic complements.

A negative correlation arises if firms use the number of tariff plans as a device to segment markets

and differentiate themselves from each other. However, results do not favor such interpretation.

The paper is organized as follows. Section 2 presents the bivariate count data regression

model based on a bivariate and multivariate Sarmanov distributions with double Poisson marginals.

This section also describes the properties of the Sarmanov family of distributions in reference

to the proposed model with specific double Poisson marginal frequencies. Section 3 discusses

the estimation of this model. Section 4 estimates the two bivariate specification of the double

Poisson-Sarmanov model to study the determinants of the number of tariff options offered by

competing cellular telephone carriers in the U.S. during the mid-1980s. Section 5 concludes.

2 A Bivariate Double Poisson-Sarmanov Count Data Model

Consider a sample of size n of a K-variate process. Let yk = 0, 1, 2, . . . be distributed as a double

Poisson distribution with parameters µk and θk, conditional on a set of regressors xk in a sample

with i = 1, 2, . . . , n observations. After studying the properties of the double exponential family

of distributions Efron (1986) shows that the probability frequency function of a double Poisson

distribution is:
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f̃k(yk|µk, θk) = c(µk, θk)fk(yk|µk, θk) , (1a)

fk(yk|µk, θk) =
√
θk exp(−θkµk) exp(−yk)

yk
yk

yk!

(
eµk
yk

)θkyk

, (1b)

1
c(µk, θk)

=
∞∑

yk=0

fk(yk|µk, θk) ' 1 +
1− θk
12θkµk

(
1 +

1
θkµk

)
, (1c)

where e = exp(1), f̃k(yk|µk, θk) denotes the exact double Poisson density, and fk(yk|µk, θk) is the

approximate probability mass function for the double Poisson family. The constant c(µk, θk) makes

f̃(yk|µk, θk) integrate to 1. Efron (1986) shows that c(µk, θk) nearly equals 1 and thus he concludes

that fk(yk|µk, θk) is a good approximation for f̃k(yk|µk, θk). The obvious advantage of the double

Poisson over the standard Poisson distribution is that the mean and variance do not depend on the

same single parameter. Thus, Efron (1986) also shows that conditional on a set of regressors xk,

the expected count corresponding to observation i and its variance are:7

E[yk|xk] ' µk , (2a)

σ2
k = Var[yk|xk] ' µk

θk
. (2b)

Hence, the double Poisson includes the standard Poisson as a particular case when θk = 1 but it

allows for overdispersion if θk < 1 as well as for underdispersion if θk > 1. As it is commonly

the case for count data regression models, I will specify an exponential mean function relating the

observable characteristics to the expected number of counts:

µk = exp
(
x′kβk

)
. (3)

7 Efron (1986, Table 2) explores the discrepancy between f̃k(yk|µk, θk) and fk(yk|µk, θk) as a function of
parameters θk and µk. For the application of Section 4 the approximate probability is just 1.17% larger than the
exact probability frequency function at the estimated value of the parameters. Notice however that all relations below
make use of the exact double Poisson density.
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Using Stirling’s formula z!'
√

2πz · zz · exp(−z) repeatedly for z = yk and z = θkyk, the

frequency function (1b) is accurately approximated by:8

fk(yk|µk, θk) ' θk exp(−θkµk)
(θkµk)θkyk

Γ(θkyk + 1)
. (4)

Sarmanov (1966) introduced a family of flexible bivariate distributions with given marginals.

The double Poisson-Sarmanov count data regression models assumes that the marginal distributions

are double Poisson. The bivariate probability frequency function takes the following form:

f12(y1, y2) = f1(y1)f2(y2)× [1 + ω12ψ1(y1)ψ2(y2)] , (5)

where fk(yk) for k = 1, 2 corresponds to the double Poisson marginal frequency (4). For the case

of positive counts, the mixing functions ψk(yk) are the bounded and nonconstant functions:9

∞∑
yk=0

ψk(yk)fk(yk)dyk = 0 . (6)

Lee (1996, §4) explores a general approach for finding ψk(yk) and proves that for marginal

distributions with support in R+ mixing functions are given by:

ψk(yk) = exp(−yk)− Lk(1), ∀yk ≥ 0 , (7)

where Lk(1) is the value of the Laplace transform of the marginal distribution evaluated at ζ = 1:

8 The use of Stirling’s formula is useful for practical purposes to ensure the stability of estimation for large
counts (not an issue in the application of this paper). Moreover, using it twice for z = yk and z = θkyk simplifies
yk

yk/yk! in (1b) and helps showing the convergence of the infinite sums of the double Poisson-Sarmanov model in
Section 3.2.

9 In the literature on copulas mixing functions ψk(yk) are known as copula generators. See Fisher and Klein
(2007, §2) and Nelsen (2006).
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Lk(ζ) =
∞∑

yk=0

exp(−ζyk)fk(yk)dyk , at ζ = 1 . (8)

Substituting the marginal frequency function (4) we obtain an approximation to the Laplace

transform of the double Poisson distribution, which evaluated at ζ = 1 becomes:

Lk(1|µk, θk) ' c(µk, θk)θk exp(−θkµk)
∞∑

yk=0

(θkµk)θkyk exp(−yk)
Γ(θkyk + 1)

. (9)

Thus, according to (7), the mixing function of the double Poisson-Sarmanov distribution is:

ψk(yk|µk, θk) ' exp(−yk)− c(µk, θk)θk exp(−θkµk)
∞∑

yk=0

(θkµk)θkyk exp(−yk)
Γ(θkyk + 1)

. (10)

A common theme in the literature on copula functions is the maximum range of variation

of correlation. For expression (5) to properly define a bivariate density function the value of ω12

needs to fulfill the following constraint:

ω12 ∈ R : 1 + ω12ψ1(y1)ψ2(y2) ≥ 0 ∀y1, y2 . (11)

The Sarmanov family contains the Farlie-Gumbel-Morgenstern family of distributions as noticed

by Johnson, Balakrishnan, and Kotz (2000, §44.13). The Sarmanov family shows not only a wider

range for correlation coefficients, but also the possibility that correlation is negative, a rare feature

of copula functions, e.g., Joe (1997, 5.4). Indeed, Lee (1996) shows that restriction (11) holds when

ω12 falls within the following bounds:

ω12 =
−1

max{L1(1)L2(1), [1− L1(1)][1− L2(1)]}
≤ ω12 ≤

1
max{L1(1)[1− L2(1)], [1− L1(1)]L2(1)}

= ω12 ,

(12)

which needs to be fulfilled for every observation in the sample.
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Next, it is useful to define the following mixing function weighted mean:

νk(µk, θk) =
∞∑

yk=0

ykψk(yk)fk(yk)dyk = −L′k(1|µk, θk)− Lk(1|µk, θk)µk

' c(µk, θk)θk exp(−θkµk)
∞∑

yk=0

(θkµk)θkyk exp(−yk)
Γ(θkyk + 1)

(yk − µk) ,

(13)

where L′k(1|µk, θk) denotes the value of the derivative of the Laplace transform (9) of the double

Poisson frequency evaluated at ζ = 1, and where Γ(θkyk + 1) is the gamma function:

Γ(θkyk + 1) =

∞∫
0

ηθkyk exp(−η)dη . (14)

Notice that integrating the product y1y2 with respect to (5) and making use of (13), the product

moment can be written as:

E [y1y2] = µ1µ2 + ω12ν1ν2 , (15)

so that the correlation coefficient of a well defined double Poisson-Sarmanov distribution is:

ρ12 =
ω12ν1ν2

σ1σ2
' ω12

2∏
k=1

c(µk, θk)θk exp(−θkµk)√
µk/θk

∞∑
yk=0

(θkµi)θkyk exp(−yk)
Γ(θkyk + 1)

(yk − µk)


=ω12

2∏
k=1

Q(µk, θk) .

(16)

Thus, when ω12 = 0 the correlation parameter is ρ12 = 0, and variables y1 and y2 are independent.

Combining all these elements into (5) we obtain the probability of observing simultaneously

a pair of counts {y1, y2} generated by the double Poisson-Sarmanov distribution:

f12(y1, y2) '

(
2∏

k=1

{
c(µk, θk)θk exp(−θkµk)

(θkµk)θkyk

Γ(θkyk + 1)

})
×

(
1 + ρ12

2∏
m=1

S(µm, θm)
Q(µm, θm)

)
, (17)
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where:

S(µm, θm) = exp(−ym)− c(µm, θm)θm exp(−θmµm)
∞∑

ym=0

(θmµm)θmym exp(−ym)
Γ(θmym + 1)

. (18)

In addition, for this double Poisson-Sarmanov to be coherent and properly define a bivariate

probability frequency function, the constraint corresponding to the general case (12) needs to hold.

Making use of (9) and (16), the constraint can be written in terms of ρ12 as follows:

ω12

2∏
k=1

Q(µk, θk) ≤ ρ12 ≤ ω12

2∏
k=1

Q(µk, θk) , ∀ i. (19)

2.1 Multivariate Extension

Multivariate extensions of this model are of clear interest for practical purposes. Lee (1996, §8)

suggests a generalization of the joint density function of a multivariate Sarmanov distribution that

accounts for higher order correlation among counts:

f1,2,...,K(y1, . . . , yK) =

[
K∏
k=1

fk(yk)

]
× [1 +Rψ1,...,ψK ,ΩK

(y1, . . . , yK)] , (20)

where correlations must fulfill the following condition:

1 +Rψ1,...,ψK ,ΩK
(y1, . . . , yK) = 1 +

∑∑
1≤l1≤l2≤K

ωl1l2

2∏
m=1

ψlm(ylm)

+
∑∑∑

1≤l1≤l2≤l3≤K
ωl1l2l3

3∏
m=1

ψlm(ylm) + · · ·+ ω12...K

K∏
m=1

ψm(ym) ≥ 0, ∀y1, . . . , yK .

(21)

Extending the double Poisson-Sarmanov to more than two dimensions reduces to repeating

the bivariate analysis of this section and substituting the probability frequency function (4) and

mixing function (10) into (20) and (21):
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f1,2,...,K(y1, . . . , yK) '

[
K∏
k=1

{
c(µk, θk)θk exp(−θkµk)

(θkµk)θkyk

Γ(θkyk + 1)

}]
×

1 +
∑∑

1≤l1≤l2≤K
ρl1l2

2∏
m=1

S(µlm , θlm)
Q(µlm , θlm)

+
∑∑∑

1≤l1≤l2≤l3≤K
ρl1l2l3

3∏
m=1

S(µlm , θlm)
Q(µlm , θlm)

+ · · ·+ ρ12...K

K∏
m=1

S(µlm , θlm)
Q(µm, θm)

]
,

(22)

where, similarly to equation (16), higher order correlation coefficients are given by:

ρ12...K = ω12...K

K∏
k=1

(
νk
σk

)
, (23)

which in turn makes use of the product moment:

E [y1y2 . . . yK ] =
K∏
k=1

µk + ω12...K

K∏
k=1

νk . (24)

3 Estimation

Despite the apparently cumbersome notation, estimation of the proposed model is relatively straight-

forward. Take for instance the scalar realizations y1i and y2i of two count random variables

given two vectors of regressors x1i and x2i, parameter vectors γ1 and γ2, as well as parameter

scalar ω12. Estimation by maximum likelihood maximizes the probability of jointly observing

{y11, y21}, {y12, y22}, . . . , {y1n, y2n} in an n-size sample. Using the general bivariate Sarmanov

distribution (5), the log-likelihood function can be written as:

L (γ1, γ2, ω12) =
n∑
i=1

2∑
k=1

ln fk (yki|xki, γki) +
n∑
i=1

ln

[
1 + ω12

2∏
k=1

ψk (yki|xki, γki)

]
. (25)

– 10 –



Notice that ω12 only enters the term between brackets. The estimation thus proceeds

iteratively, alternatively fixing the value of ω12 or γ1 and γ2 until we achieve convergence. Initial

values γ̂(0)
1 and γ̂

(0)
2 are obtained under the assumption of independence, i.e., setting ω12 = 0

and estimating two separate count data regression models. The initial estimate of ω12 is obtained

by grid search, evaluating (25) over the interval defined by the constraint (12) while holding the

estimated γ̂
(0)
1 and γ̂

(0)
2 constant. With this new value of ω̂(0)

12 , new estimates γ̂(1)
1 and γ

(1)
2 are

obtained by maximizing (25) while holding ω12 constant at the estimated value ω̂(0)
12 . The process

is repeated until convergence is achieved.10

Estimating a trivariate or multivariate model is slightly more convoluted because in principle

equation (21) would allow for multiple combinations of correlations coefficients that fulfill such

constraint. However, the solution to this maximization problem is unique because Lee (1996,

Theorem 5a) states that if {y1, y2, . . . , yK} are jointly distributed according to a K-variate Sarmanov

distribution, then any subset of {y1, y2, . . . , yK} will also be distributed as a Sarmanov distribution.

To see how this helps estimating the different correlation coefficients of a multivariate Sarmanov

distribution, consider the trivariate case. The log-likelihood function of an n-size sample is:

L (γ1, γ2, γ3, ω12, ω13, ω23, ω123) =
n∑
i=1

3∑
k=1

ln fk (yki|xki, γki)

+
n∑
i=1

ln

1 +
∑∑

1≤l1≤l2≤3

ωl1l2

2∏
m=1

ψlm (ylmi|xlmi, γlmi) + ω123

3∏
k=1

ψk (yki|xki, γki)

 .
(26)

Under the assumption of independence, single dimensional count data regressions produce

initial estimates for γ1, γ2, and γ3. Conditioning on γ̂
(0)
1 and γ̂

(0)
2 in (25) we obtain the es-

timate ω(0)
12 by the grid search procedure described above. The same approach can be used to

obtain estimates ω(0)
13 and ω

(0)
23 while conditioning the likelihood function (25) on {γ̂(0)

1 , γ̂
(0)
3 } and

10 The GAUSS code used for the estimation of the bivariate model of Section 4 is available upon request.
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{γ̂(0)
2 , γ̂

(0)
3 }, respectively. Then, maximizing (26) produces an estimate of ω123 while holding all

the other parameters constant. Once ω̂(0)
123 has been obtained, new estimates γ(1)

1 , γ(1)
2 , and γ

(1)
3

are estimated by maximizing (26) while holding {ω̂(0)
12 , ω̂

(0)
13 , ω̂

(0)
23 , ω̂

(0)
123} constant. This procedure is

then repeated until convergence is achieved.

3.1 Inference

We first need to evaluate whether we can consistently estimate parameters that may lie on the

boundary generically defined by condition (11). Notice that the Sarmanov model only imposes a

constraint on the correlation coefficient that must be fulfilled by every observation in the sample,

a condition that varies with the regressors considered in the estimation. All other parameters,

although they define the range of variation of the correlation coefficient, remain unrestricted.

Furthermore, the range defined by (12) is a compact convex set so that any estimate of the

correlation coefficient includes its neighborhood, thus fulfilling the requirements of Andrews (2000,

§4.2) who studies the asymptotic distributions of estimators when the true parameter lies on the

boundary of the parameter space.

Thus, in order to obtain consistent inference for these parameter estimates, we need to

address the possibility that estimated parameters may lie on the boundary defined by the constraint

(19). Andrews (1999) shows that standard bootstrapping does not produce consistent inference

when a parameter is on the boundary of the parameter space defined by a nonlinear inequality such

as general conditions (11) and (21) for the bivariate and multivariate case, respectively. Rather

than computing common bootstrap standard errors Andrews (1999, §6.4) suggests the use of a

rescaled bootstrap method in which bootstrap samples of size b < n are employed.11 Andrews

11 In the case of rescaled bootstrapping we use a given number of bootstrap samples of size b where some
of these samples might be repeated. This differentiates rescaled bootstrapping from subsampling where some or all
n!/[b!(n − b)!] samples of size b (always without repetition) are employed in estimating each replication, e.g., see
Politis, Romano, and Wolf (1999, §2.1).
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(2000, §4) shows that this modified bootstrapping approach produces consistent standard errors

estimates regardless of whether the true parameter is on a boundary of the parameter space or

not. To speed up the process of obtaining robust inference I follow Andrews (2002) and compute

a 10-step version of the rescaled bootstrap.

3.2 Econometric Implementation

Equation (18) includes the following sum:

Sk(µk, θk) =
∞∑

yk=0

(θkµk)θkyk exp(−yk)
Γ(θkyk + 1)

. (27)

We thus need to decide how many terms of the infinite sums in equations (9)-(17) to account for

in the estimation. Notice that for θk = 1, the series Sk(µk, θk) converges to:

Sk(µk, 1) =
∞∑

yk=0

[µk exp(−1)]yk

y!
= exp

(µk
e

)
, (28)

because of the well known Taylor expansion of the exponential function. Using Stirling’s formula

repeatedly we get:

lim
yk→∞

(θkµk)θkyk exp(−yk)√
2π
√
θkyk(θkyk)θkyk exp(−θkyk)

= lim
yk→∞

1√
2πθkyk

· lim
yk→∞

(
µk
yk

)θkyk

· lim
yk→∞

[exp(−yk)]1−θk = 0 ,

(29)

so that the sum Sk(µk, θk) converges for any value of θk. However, the length of the series needed

to approximate Sk(µk, θk) varies greatly with θk. We can rewrite equation (27) as:

Sk(µk, θk) =
∞∑

yk=0

[
(θkµk)θk exp(−1)

]yk

yk!
yk!

(θkyk)!
, (30)
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so that the number of elements of the sum in (27) needed to approximate Sk(µk, θk) decreases with

θk for any given precision level. Thus, longer series are needed to approximate Sk(µk, θk) the more

overdispersed the distribution of yk is.

4 Number of Tariff Options in Duopoly Competition

At the beginning of the 1980s, technology was a barrier for competition in cellular telephony,

essentially because of the large size of bandwidth needed for transmission and the scarce radio

spectrum available. To solve this problem the Federal Communications Commission (FCC ) divided

the U.S. into 305 non-overlapping markets corresponding to the Standard Metropolitan Statistical

Areas (SMSAs). In 1981, the FCC set aside 50 MHz of spectrum in the 800 MHz band for cellular

services. One of the two cellular channel blocks in each market —the B block or wireline license—

was awarded to a local incumbent carrier, while the A block —the nonwireline license— was

awarded by comparative hearing to an entrant carrier other than a local wireline incumbent. After

awarding the first thirty SMSA licenses by means of this expensive and time consuming approach,

rules were adopted in 1984 and 1986 to award the remaining nonwireline licenses through lotteries.

Depending on the market, there were between 6 and 579 contenders for a single nonwireline license.

The administrative decision to award the second license to one out of hundreds of applicants was

customarily contested in court in a process that took several years. As the licenses were finally

awarded, entrant firms had six month to be fully operative, something that was facilitated by the

FCC requirement hat the incumbent had to share its installed base of antennae with the entrant

in this early stage of the market in order to promote competition.12

This section studies whether there were strategic consideration in designing the pricing

strategies of local duopolists in local cellular telephone markets in the early U.S. cellular telephone

12 For an institutional and historical account of the poorly designed awarding process of licenses in the early
U.S. cellular telephone industry see Hausman (2002), Parker and Röller (1997), or Murray (2002).
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Table 1: Descriptive Statistics

Incumbent Entrant

Variables Mean Std.Dev. Mean Std.Dev.

plans 3.6402 1.2219 3.5541 1.3915
year92 0.1199 0.3252 0.1199 0.3252
commuting 3.1428 0.1512 3.1428 0.1512
population 0.0793 0.9583 0.0793 0.9583
education 2.5752 0.0352 2.5752 0.0352
business 3.2840 0.8876 3.2840 0.8876
growth 0.9361 1.0274 0.9361 1.0274
income 3.6406 0.1318 3.6406 0.1318
multimarket 3.1824 2.2808 3.1824 2.2808
regulated 0.5270 0.4997 0.5270 0.4997
ameritech 0.1554 0.3626 0.0942 0.2206
bellatl 0.0574 0.2329 0.0671 0.1725
bellsth 0.0878 0.2833 0.0600 0.1652
centel 0.0895 0.2857 0.0541 0.1623
contel 0.0507 0.2195 0.0270 0.1204
gte 0.1436 0.3510 0.0777 0.1970
mccaw 0.2782 0.2473
nynex 0.0963 0.2952 0.0550 0.1734
pactel 0.0220 0.1467 0.0388 0.1354
swbell 0.1334 0.3403 0.0802 0.2174
uswest 0.0895 0.2857 0.0566 0.1638

All variables are defined in the text. The number of observations is 592.

industry. Tariffs in the early U.S. cellular industry were quite simple. A tariff option was normally

a three-part tariff consisting of an allowance of “free” minutes per month, a fixed monthly fee, and

a fixed rate per minute. Tariff options normally distinguished between peak (comprising on average

about 13 hours a day at that time) and off-peak marginal rates.13 I will thus focus on the total

number of tariffs offered by the competing firms as strategic choice variable to sign up new customers

with heteregoneous calling needs. Data available contain a complete description of the tariff options

offered by any of the two firms present in the 100 largest markets of the U.S. between 1984 and

13 Other value added services such as detailed billing, call waiting, no-answer transfer, call forwarding, three
way calling, busy transfer, call restriction, and voice mail were priced independently and rarely bundled together
with particular tariff options.
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1988. I thus can compute the number of tariff options of each firm, plans. This information was

collected by Economic and Management Consultants International, Inc. and reported in Cellular

Price and Marketing Letter, Information Enterprises, various issues, 1984–1988. For year 1992,

Marciano (2000) combined information for the same carriers from Cellular Directions, Inc., the

Cellular Telephone Industry Association, and direct interviews with managers.

Table 1 presents the market and firm specific characteristics used in the estimation.14

commuting refers to the average daily commuting time in minutes in each city; population

represents the number of inhabitants in each market measured in millions; education is the

median number of years of schooling; growth is the average percent growth of the population in

the 1980’s; income measures the median income in thousands of dollars; and business accounts

for the number of business in sectors with high demand for cellular services of each market and

measured in thousands of firms.15 With the exception of growth, all these variables are measured

in logarithms. Two other interesting market indicators are multimarket and regulated. The

former is the number of markets in which a particular couple of firms compete against each other.16

The latter is a dummy variable that indicates whether new tariffs need to be approved by the

regulator.17 In order to control for potential firm effects, I also include firm dummies to identify

the largest shareholder of each cellular carrier (available from the FCC ). Only those carriers with

14 Other regressors are available but they are not significant in neither equation.

15 Businesses with potential high cellular demand include service firms, health care, professional, and legal ser-
vices, contract construction, transportation, finance, insurance, and real estate. The source of all these demographics
is the 1989 Statistical Abstracts of the United States; U.S. Department of Commerce, Bureau of the Census, using the
Federal Communication Commission (FCC ) Cellular Boundary Notices, 1982–1987, available in The Cellular Market
Data Book, EMCI, Inc., as well as the 1990 U.S. Decennial Census.

16 Busse (2000) addresses the relationship between multimarket contact on collusion so that the offering of
certain tariff features allow firms to coordinate pricing.

17 Shew (1994) claims that the possibility of having request approval of new tariffs in the future prompts firms
in this industry to offer an “excessive” number of options when they enter the market, the only time when they do
not have to seek such approval as cost data is not yet available.
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Table 2: Frequency Distributions of Number of Tariff Options

1984–1988 1992

Incumbent Entrant Incumbent Entrant

Tariff Options Cases Rel.Freq. Cases Rel.Freq. Cases Rel.Freq. Cases Rel.Freq.

1 14 0.0269 3 0.0423 51 0.0979 5 0.0704
2 71 0.1363 7 0.0986 76 0.1459 3 0.0423
3 198 0.3800 5 0.0704 122 0.2342 13 0.1831
4 128 0.2457 16 0.2254 162 0.3109 18 0.2535
5 63 0.1209 40 0.5634 55 0.1056 32 0.4507
6 47 0.0902 0 0.0000 55 0.1056 0 0.0000

Mean, (Var.) 3.5681 (1.4651) 4.1690 (1.3996) 3.4971 (1.9774) 3.9718 (1.4563)

Absolute and relative frequency distributions of the number of tariff options offered by each active firm.

at least 4% of licenses in this sample are identified.18 Lastly, year92 identifies those observations

from 1992, when arguably, the cellular market had matured.

Table 2 presents the marginal distribution of the total number of tariffs offered by incumbent

and entrant carriers. Notice that incumbents only offer 3.5 and entrants 4 tariff options on average.

When comparing pricing over time, it appears that there is a very slight reduction of options from

1984–1988 to 1992. This is consistent with the prediction of theoretical models of nonlinear pricing

competition as markets mature and most potential customers have already signed up for one of

the two carriers, e.g., Armstrong and Vickers (2001) and Rochet and Stole (2002). Notice also

that the unconditional distribution of tariff plans is always underdispersed, i.e., the variance of the

distribution of number of plans never exceeds the mean, which is the opposite of what most count

data regression models address as the consequence of unobserved heterogeneity. These features,

and in particular the low number of telephone options by two competing firms, make the Sarmanov

model of this paper suitable to be used in the estimation of the determinants of the number of

plans offered by different cellular carriers.

18 They are: Ameritech Mobile (ameritech), Bell Atlantic Mobile (bellatl), Bell South Mobile (bellsth),
Century Cellular (centel), Contel Cellular (contel), GTE Mobilnet (gte), McCaw Communications (mccaw),
Nynex Mobile (nynex), PacTel Mobile Access (pactel), SouthWest Bell (swbell), and US West Cellular (uswest).
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Table 3: Correlation Among Number of Tariff Options

1984–1988 1992

Plans 1 2 3 4 5 6 All 1 2 3 4 5 6 All

1 9 0 1 4 0 0 14 0 0 1 1 1 0 3
2 20 35 11 4 0 1 71 2 1 1 2 1 0 7
3 9 15 55 68 26 25 198 1 0 2 1 1 0 5
4 8 19 42 36 9 14 128 0 0 4 3 9 0 16
5 5 7 9 34 7 1 63 2 2 5 11 20 0 40
6 0 0 4 16 13 14 47 0 0 0 0 0 0 0

All 15 76 122 162 55 55 521 5 3 14 18 32 0 72

Kendall’s τ 0.2928 (9.99) 0.1836 (2.26)

Total cases for each combination of tariff options offered by the incumbent and entrant firm. Rows
indicate the number of options of the entrant and columns those of the incumbent. Kendall’s τ measures
the association among the number of tariff options. The corresponding absolute value t-statistics are
shown in parentheses. There are 521 pairs of tariff strategies in the 1984–1988 sample and 72 pairs in the
1992 sample.

Table 3 presents the bivariate frequency of each combination of the number of tariff options

offered by incumbent and entrant carriers. Simple unconditional association measures indicate that

the number of tariff options appear to be strategic complements when we measure the association

between these strategies regardless of any firm or market observed heterogeneity. It is clear from

this table that in the 1984–1988 period, firms frequently offer either the same or very similar number

of tariff options. Between 1984 and 1988, firms offered the same number of tariff options in 30%

of cases while in 71% of cases, the difference between the number of tariff plans offered by the

incumbent and the entrant does not exceed one. In the 1992 sample these percentages increase up

to 71% and 75% of cases, respectively.

4.1 Results

Table 4 presents the results of the estimation of the bivariate double-Poisson Sarmanov count data

regressions model. Estimates capture the fact that the distribution of the number of tariffs are

positively correlated and underdispersed. Table 4 also reports the estimates of the corresponding,
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Table 4: Double Poisson – Sarmanov Regression

Independent Regressions Sarmanov Regression

Variables Incumbent Entrant Incumbent Entrant

constant 2.3986 (0.47) –12.5831 (1.79) 2.3967 [25.87] {52.93} –12.6123 [27.21] {61.25}
year92 0.7212 (6.87) 0.6151 (4.18) 0.7115 [2.69] {4.06} 0.6216 [2.98] {3.68}
commuting –1.1548 (1.92) 1.5559 (2.06) –1.1798 [11.88] {14.25} 1.5674 [13.16] {17.57}
population –0.0489 (0.40) 0.0743 (0.59) –0.0475 [0.41] {0.54} 0.0652 [0.48] {0.62}
education 0.1227 (0.06) 2.8608 (0.97) 0.1284 [1.66] {1.91} 2.8691 [20.19] {36.52}
business 0.0333 (0.26) –0.2681 (2.01) 0.0237 [0.19] {0.24} –0.2694 [1.85] {2.12}
growth 0.0891 (1.51) –0.4534 (6.76) 0.0874 [0.98] {1.55} –0.4500 [4.51] {5.99}
income 1.4633 (2.32) 1.3248 (1.64) 1.4941 [14.12] {18.69} 1.3347 [13.57] {18.36}
multimarket 0.0409 (1.80) 0.1082 (4.06) 0.0394 [0.80] {1.60} 0.1037 [1.71] {3.62}
regulated 0.0928 (0.87) 0.6520 (4.66) 0.0815 [0.54] {0.76} 0.6342 [4.31] {5.95}
ameritech –0.2183 (0.87) 0.3169 (0.63) –0.2299 [1.76] {2.25} 0.2406 [1.80] {2.07}
bellatl 1.0770 (4.97) 0.1317 (0.31) 1.0957 [5.78] {7.00} 0.0848 [0.54] {0.62}
bellsth –1.2825 (6.09) –0.9200 (2.07) –1.2362 [5.91] {7.13} –0.9414 [5.77] {6.67}
centel –0.2719 (1.26) 1.3981 (2.94) –0.2827 [1.58] {2.02} 1.3036 [8.43] {10.79}
contel –0.8500 (3.70) –0.7116 (1.42) –0.8524 [3.71] {4.63} –0.7340 [5.68] {6.51}
gte –1.1022 (6.38) –0.1997 (0.52) –1.0929 [5.81] {7.55} –0.2429 [1.41] {1.47}
mccaw 0.8311 (2.76) 0.8508 [4.67] {5.62}
nynex 0.9543 (5.30) 0.9591 (2.37) 0.9632 [5.53] {6.32} 0.8880 [4.76] {4.74}
pactel –1.2295 (4.07) –0.0734 (0.11) –1.1967 [6.29] {6.71} –0.0748 [0.76] {0.91}
swbell –0.5886 (2.53) 0.0341 (0.06) –0.5839 [3.49] {4.55} –0.0037 [0.03] {0.04}
uswest –0.0150 (0.08) 0.7996 (1.69) –0.0048 [0.03] {0.03} 0.7491 [4.27] {5.60}
θ 3.6324 (16.37) 2.3895 (15.24) 3.6585 [15.60] {17.79} 2.4113 [13.82] {18.33}

ρ 0.0396 [3.46] {5.17}

–lnL 830.17 942.49 1,766.60

Marginal effects evaluated at the sample mean of regressors. Endogenous variables are the number of tariff options
of of each competing firm. Absolute value t-statistics computed using a 2,000 replication, 10-step bootstrapping.
Heteroskedastic-consistent t-statistics are reported between parentheses. For the Sarmanov model t-statistics reported
between brackets make use of rescaled bootstrapping while those between curly brackets make use of standard
bootstrapping, respectively.

restricted, independent, count data regression models. Table 4 shows that marginal effects are very

similar. However the estimation of the correlation coefficient ρ is significant and the specification

with independent count regression is rejected in favor of the bivariate double Poisson-Sarmanov

model (likelihood ratio test of 12.12, 0.001 p-value). Since in addition of the sample considered,

the effective range of the correlation coefficient is partially determined by the regressors included

in the exponential mean function (3).
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The estimate of correlation between the number of tariff options offered by competing firms

in Table 4 is small but positive and significant.19 Such result supports the view that the number

of tariff options offered by competing cellular carriers are strategic complements.

Continuing with the effects of firm and market characteristics on the pricing decisions of

cellular carriers, estimates show that ownership fixed effects are generally significant and indicate

that cellphone carriers offer more tariff options in those markets where they act as new entrants

relative to those markets where they are the incumbents. Many market characteristics have the

same sign both as determinant of the number of tariffs of the incumbent and the entrant (although

sometimes in one of the equations they fail to be significant). income and year92 have a positive

effect on the number of tariffs offered by both competing carriers while multimarket only has a

positive effect on the number of tariff options offered by the entrant. growth and business have

a negative effect on the number of tariff options offered by the entrant only, the latter being only

marginally significant. These negative signs could be reconciled with situations where dynamic

pricing considerations and switching cost are present. In the absence of a fast growing economy or

if business customers are not numerous, the entrant has to offer several tariff options to segment the

market of smaller users in order to induce them to subscribe. Offering just one or few tariffs that

are less expensive than those offered by the incumbent will not secure the bulk of high valuation

customers as the incumbent has previously targeted them and locked them in long term contracts.

Finally, commuting is the only variable that shows a significant opposite effect for each firm: in

markets with longer commuting times entrants offer more tariff options than incumbents.

19 Notice that I have computed t-statistics based on two bootstrapping methods to evaluate whether the
inference is sensible to dealing with the existence of bounds in the estimation given by the constraint (16). There
are very few differences but in interpreting the results, I focus on the inference obtained making use of rescaled
boostrapping, i.e., t-statistics between brackets. This criteria is more conservative regarding the significance of
parameters and also the appropriate one to deal with the existence of constraints involving the parameters estimate.
Every estimation of the scaled bootstrap is run on a sample of size 1/3 of the full sample and where the same
observation may be present multiple times. I repeated the analysis without any regressors. While correlation becomes
not significant the simpler specification is rejected in favor of that of Table 4.
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4.2 Interpreting the Sign of the Correlation Coefficient

The observed co-movements in the total number of plans offered by competing firms may respond

not only to strategic interactions between firms who want to match competitors’ practices (captured

by ϑk above) but also by their attempt to extract as much surplus as possible from consumers’

willingness to pay for cellular service (the effect of ε above) in a competitive environment.

Firms engaging in price discrimination commonly offer a few tariff options to screen a

heterogeneous customer base. In principle the set of fully nonlinear tariffs offered by two competing

firms are the best response to each other’s tariffs given the distribution of consumer heterogeneity.

The few existing theoretical results in this area show that equilibrium in nonlinear tariffs exists both

in common agency or in exclusive agency environments (see Stole (2005) for an overview). However,

such results refer to fully nonlinear tariffs rather than to how tariffs are commonly implemented,

i.e., through a menu of tariff options.

The use of few tariff options to screen consumer might be due to the existence of commer-

cialization costs or other marketing consideration. Thus, the foregone profits of an additional tariff

will eventually not compensate such cost, as foregone profits decline rapidly with the number of

tariff options, e.g., Wilson (1993, §8.3). Commercialization costs may refer not only to the cost of

designing and selling this additional tariff option, but also the money value of the reputation effect

that such strategy may have with customers who might value tariff complexity negatively. If this

was the only reason determining the number of tariffs options offered by each carrier, we should

expect that the number of tariffs offered by the first competitor (conditional on available firm and

market characteristics) were uncorrelated with the number of tariff options offered by the second

firm in the absence of synergies across commercialization costs of different firms.

Alternatively, with non-zero correlations between counts the number of tariff options offered

becomes strategically relevant. If correlation among the conditional distribution of counts is
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positive, firms tend to offer a similar number of tariff options and their numbers are strategic

complements. This environment responds to the equilibrium models of nonlinear pricing of Arm-

strong and Vickers (2001) and Rochet and Stole (2002) where firms end up offering similar, if not

identical, two-part tariffs. This is the scenario supported by results of Table 4. On the contrary,

if correlation among the number of tariff options offered is negative, firms might be attempting

to differentiate their products through pricing and therefore use the number of tariff options as

strategic substitute. Yang and Ye (2008) show that this situation could arise in mature markets

where business stealing, rather than expanding the base of active customer, is the main effect of

price discrimination. Results do not support this view, which is intuitive given the very early stage

of development of the cellular industry during the 1980s.

5 Concluding Remarks

The Sarmanov count data model presented in this paper can accommodate both over and under-

dispersion and allows for the possibility that counts are not only positively but also negatively

correlated. Furthermore, these two features of the joint distribution of counts are not driven by

a common unobserved factor to all univariate marginal distributions and the parameterization of

the likelihood function allows for all possible combinations of over or underdispersed marginals and

correlation of any sign.

Results from analyzing the pricing strategies of cellular carriers in the U.S. during the

mid-1980s indicates that the number of tariff options offered by these firms can be considered

strategic complements and, as postulated by Wilson (1993, §8.3), that nonlinear pricing competition

is mostly driven by how heterogeneous the valuations of consumers are as well as by an attempt to

match the competitor pricing practices to avoid loosing early subscribers to the cellular service.
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