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Abstract

This paper studies a class of multidimensional screening models where different type dimensions
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totally positive functions to show that some critical properties of distributions of asymmetric
information parameters, such as increasing hazard rate, monotone likelihood ratio, and single-
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1 Introduction

Models of multidimensional screening consider more than a single source of heterogeneity among

agents and study how the joint distribution of taste parameters condition the features of optimal

contracts. Frequently, we can show little else than the existence of an equilibrium in models of

asymmetric information where the principal only knows the distribution of those multidimensional

types.1 This paper considers the problem of aggregating these different type dimensions into a

single dimensional type for which well-established results exist that help characterize the solution

of principal-agent models. The paper addresses conditions under which some useful features

of the distribution of different type components are preserved through this aggregation process.

Furthermore, it is shown that in some circumstances, such aggregation endogenously ranks these

solutions according to their expected profits. This is due to the fact that the distribution of the

aggregate type is more favorable than the distribution of any of its type components. This is

a result that arises naturally, for instance, when independent log-concave distributed signals are

combined into a new single aggregate through convolution.

Consider the following motivating example. A multiproduct monopolist may choose to price

discriminate among his customers according to their willingness to pay for each individual product.

In the case of second degree price discrimination of independent goods (adverse selection), the

distribution of the willingness to pay for a single product is the key element in characterizing the

optimal nonlinear tariff schedule. If the hazard rate of such distribution is increasing, it suffices that

preferences fulfill the single-crossing property to ensure the existence of a separating equilibrium.

Alternatively, the monopolist may decide to price discriminate on the basis of the joint willingness to

pay for some given bundle of products. This is the case of pure bundling, when the monopolist only

1 While existence of equilibrium has been proven in general, e.g., see Armstrong (1996), Rochet and Choné
(1998), and Wilson (1995), uniqueness of equilibrium in multidimensional screening models has only been shown for
particular environments. See Basov (2001), Rochet and Choné (1998), and Wilson (1993, §12-14).
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cares about the aggregate willingness to pay for a given set of products, and thus, the distribution

of this aggregate type becomes the critical element in defining the optimal nonlinear bundling

schedule.2 The focus of this paper is to explore conditions under which critical features of the

distributions of the type components are preserved through aggregation in order to ensure the

existence of separating equilibria with respect to the aggregate type in models of asymmetric

information.3 Furthermore, such aggregation may lead the distribution of the aggregate type to

be more favorable than the distribution of any of the type components. Thus, favorableness may

arise endogenously rather than being imposed as an assumption. Other problems with a similar

analytical structure include those of moral hazard with multiple signals where the principal may

design contracts to induce an efficient level of the agent’s different effort dimensions, or alternatively,

focus on the overall performance of the agent by bundling her different dimensions of effort in a

sufficient aggregate signal.

A result commonly found in the literature of multidimensional screening is that bundling

is generally preferred to screening of different type dimensions separately even when individual

valuations are independently distributed.4 The particular approach taken in this paper has the

advantage that explicit, well behaved, solutions can be found for the bundled and unbundled cases.

But most importantly, the suggested framework allows us to derive the properties of the distribution

of the aggregate type from those of the distributions of its components, which in turns suggest that

the reason behind the principal’s preference for bundling solutions is that the distribution of the

aggregate type is inherently more favorable than that of its type components.

2 I do not contemplate the case of mixed bundling. The case of mixed bundling does not fit this structure.
Mixed bundling combines pure bundling with individual pricing by offering the option to consumers to opt out and
purchase only one of the two alternatives. This additional choice relaxes the incentive and participation constraints of
agents and as result, the bundle discounts need not be so important so as to induce all consumers to purchase. McAfee,
McMillan, and Whinston (1989) and Jeihel, Meyer-ter-Vehn, and Moldovanu (2007) show that mixed bundling leads
to higher expected profits than pure bundling in multiproduct pricing and auction models, respectively.

3 Rochet and Stole (2003, §4.2) show that in such environments we should expect bunching with respect to
the original type dimensions to be a common phenomenon.

4 See Armstrong (1996, §4.6), or Palfrey (1983).
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Total positivity is a very general smoothness property common to many distributions. This

paper exploits closure results of totally positive distributions that ensure that properties such as

log-concavity of the density, distribution, and survival functions; increasing hazard rate; monotone

likelihood ratio; and single-peakedness are sometimes preserved when stochastic variables are ag-

gregated or transformed.5 For instance, consider the case where the aggregate type is defined as the

sum of two (or more) type components. Log-concavity of the probability density function implies

that the corresponding distributions have increasing hazard rates. Furthermore, log-concavity is not

only preserved under convolution, but the distribution of the aggregate type dominates in hazard

rate any of the type components. This, in turn, implies that the distribution of the aggregate type is

more favorable than those of any of its components, as the aggregate type first order stochastically

dominates any of its components, therefore leading to larger expected profits with bundling than

with independent screening of each type dimension.

While the idea of aggregating different type components into a single measure has received

some attention lately, there is no systematic study in the economics literature on the links between

the properties of distributions of type components –for instance θ1 and θ2–, and the aggregate type

θ0.6 There are however, several apparently disconnected contributions in economics where the main

result could be explained as the consequence of the properties of combining the distributions of

two or more type components into an aggregate type. The length of the list of papers that fail to

recognize total positivity as either explaining the economic contribution or as being behind some

the assumptions that ensure the desired result vindicates the usefulness of providing the present

unifying framework based on the preservation results of totally positive functions.

5 The key reference on closure of total positivity is Karlin (1968, §3), which systematically investigates many
of the properties of these functions and their transformations.

6 Only few papers in economics acknowledge total positivity explicitly. Those include Chakraborty (1999),
Miravete (2005), and Milgrom and Weber (1982), who make use of the multidimensional extension of total positivity
suggested by Karlin and Rinott (1980).

– 3 –



Schoemberg (1951) presents the first comprehensive description of total positivity. The idea

is later applied by Karlin (1957) to the family of Pólya distributions, which includes log-concave

distributions. These results were further studied by Karlin (1968) and Marshall and Olkin (1979).

A first set of preservation results involve transformations of each type. Thus, if T [x, y] : R2 → R

is a totally positive function, Karlin (1968, §3) studies conditions on real functions φ, ψ : R → R

so that T [φ(x), ψ(y)] is also totally positive. More interesting for the purpose of aggregating the

informative content of multiple signals is the result that the composition of totally positive functions

preserves total positivity. This dates back to the works of Andréief (1883) and Pólya and Szegö

(1925). Closer to applications useful in economics, Karlin and Proschan (1960) show that the

convolution of log-concave densities is ensured to be log-concave.

Total positivity includes log-concavity as a particular case, a family of distributions which

is key to prove many results in economics such as in auction and search models. Total positivity

also includes the monotone likelihood ratio property frequently used in models of moral hazard,

as well as the single-peakedness of preferences commonly assumed in voting models. Furthermore,

log-concavity of a density function of private information implies that the corresponding distribution

is not only log-concave but also has an increasing hazard rate, a key assumption to ensure the

existence of separating equilibrium in screening models. This paper shows that all these are features

shared by any log-concave density by making use of the equivalence between log-concave and Pólya

frequency functions of order 2 (PF2).

The results of this paper that are most novel to economists have their origin on the preser-

vation of total positivity through complex transformations by means of the Basic Composition

Formula. This relationship long known among mathematicians uncovers that many unrelated

contributions in economics share a common unifying framework. For instance, preservation results

are useful whenever independent signals are aggregated in economic models of private information.

Thus, when the value of an object to be auctioned includes both private and common values, it
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is not necessary to assume that the distribution of a bidder’s valuation is log-concave if both the

distribution of the private value and common value components are already assumed to be log-

concave. This qualification applies to the works of Goeree and Offerman (2003) in auctions, Biais,

Martimort, and Rochet (2000) in common agency, and Laffont and Tirole (1993) in procurement.

In models of asymmetric information it is a common practice to compare the performance

of a given incentive scheme under alternative distributions of the private information parameter.

Results rely on the idea of favorableness introduced by Milgrom (1981). Thus, for instance, Laffont

and Tirole (1993, §1.5) show that a regulated firm will exert less effort in reducing unit costs when

the regulator’s distribution of firm types is more favorable, i.e., it puts more weight on the more

efficient firm types. The framework presented in this paper helps qualify the result of Laffont and

Tirole (1993, §1.5) in two ways.

First, they make use of a theorem by Prékopa (1973) that ensures that a monotonically

increasing function is log-concave if it is the integral of a log-concave function. This theorem is not

critical since the monotone increasing function that Laffont and Tirole (1993, §1.5) are considering is

a distribution function. All that it is needed is that the corresponding density function is log-concave

because Barlow, Marshall, and Proschan (1963) proved that log-concavity is always preserved under

integration simply because of the fact that log-concavity is closed under convolution. This result

is at the core of the proof of Proposition 1 below.

Second, the distribution of the aggregate type does not need to be assumed to be more

favorable than those of its components. Instead, such favorableness arises endogenously since θ0

is defined as the aggregation of θ1 and θ2. Proposition 3 below shows that the hazard rate of the

distribution of θ0 is smaller than the hazard rates of the distributions of θ1 or θ2 and thus, e.g.,

Shaked and Shanthikumar (2007, Theorem 1.B.1), θ0 first order stochastically dominates either θ1

or θ2. This is only an illustrative example. There are other environments where the endogenous

favorableness of the distribution of θ0 determines whether the provision of complementary products
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should be bundled, e.g., Gilbert and Riordan (1995), or how auctioning several products simulta-

neously or separately depends on the number of bidders, e.g., Palfrey (1983). The paper therefore

shows that behind results in models of nonlinear pricing, auctions, and regulation among others

lies a general set of conditions that leads the aggregate signal to having a distribution that is more

favorable than the distribution of type components.

To show how totally positive functions can unify an apparently disperse set of results,

this paper discusses several applications involving the bundling of products and/or aggregation of

different dimensions of private information. The application of preservation results of totally positive

functions ensure the existence of separating equilibria with respect to the aggregate type even in the

event of individual stochastic demands or when agents can pursue more than one signal to convey

their types. For instance, when non-observable signals are aggregated, the optimal contracts involve

uniformly higher distortions for inframarginal types when types are not aggregated. The effect of

this more favorable aggregate distribution is to reduce the incentive of the aggregate types close to

the highest to mimic lower types. This is the result of the hazard rate dominance of the distributions

of the aggregate type over the distributions of its components in models of adverse selection, and the

ordering of the corresponding monotone likelihood ratio of distributions in moral hazard problems.

The paper is organized as follows. Section 2 presents the mathematical concepts needed to

prove that increasing hazard rate (ihr), monotone likelihood ratio (mlr), and single-peakedness

(sp) of the density functions are preserved for appropriately defined aggregation operators. Most of

the analysis is concerned with the preservation of log-concavity under convolution, which appears

more prominently in the economic literature. This section however, explores aggregation rules

beyond the addition of type components to include the case of quadratic polynomials of type

dimensions. Section 3 discusses several applications of these results including nonlinear pricing,

common agency, auctions, and informational alliances. Section 4 suggests potential applications of

the preservation results to models of moral hazard and voting. Section 5 concludes.
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2 Totally Positive and Log-Concave Functions

In this section I first review the assumptions commonly made in models of asymmetric information

regarding types and their distributions and then address the minimal mathematical concepts needed

to discuss the preservation of some of these properties when types are aggregated according to some

given rule. Let’s thus start by characterizing the distributions of the different type components:

Assumption 1: Random variables θi, i = 1, 2, have twice continuously differentiable

probability density functions fi(θi) ≥ 0 on Θi = [θi, θi] ⊂ R and fi(θi) > 0 on Θ0
i = (θi, θi) ⊂ R,

and such that their cumulative distribution function is absolutely continuous:

Fi(θi) =

θ∫
θi

fi(z)dz, (1)

A key feature that ensures the existence of a separating equilibrium in models of adverse

selection is the single-crossing property of agents’ payoff functions with respect to their control

variable and the type so that demands of different agents can be ordered for each price. I always

maintain that the single-crossing property holds both for the aggregate type θ0 and any of its

components. I therefore focus on the necessary conditions that distributions of θ1 and θ2 must fulfill

to ensure that the distribution of θ0 is ihr, mlr, or sp so that the type aggregation still allows the

principal to sort agents of different types. I begin this analysis by looking at log-concavity, a useful

smoothness property for the statistical analysis of reliability.

Definition 1: A twice continuously differentiable probability density function fi(θi) is

log-concave if:
∂2 ln[fi(θi)]

∂θ2
i

=
∂

∂θi

[
f ′i(θ)
fi(θ)

]
≤ 0 on Θ0

i ⊆ R. (2)
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Provided that the single-crossing property of preferences holds, it is possible to design

a screening mechanism that fully separates agents of different types if the distribution of an

asymmetric information parameter is ihr, a property intimately connected to log-concavity.

Definition 2: If a univariate random variable θi has density fi(θi) and distribution function

Fi(θi), then the ratio:

ri(θi) =
fi(θi)

1− Fi(θi)
on {θi ∈ Θi : Fi(θi) < 1}, (3)

is called the hazard rate of either θi or Fi(θi). The function F i(θi) = 1 − Fi(θi) is the survival

function of θi. A univariate random variable θi or its cumulative distribution function Fi(θi) are

said to be increasing hazard rate if r′i(θi) ≥ 0 on {θi ∈ Θi : Fi(θi) < 1}.

In models of moral hazard it is necessary to infer the type of an agent from a given observable

signal. These models assume that the underlying distribution of agents’ types fulfill the mlr

property, which is a critical assumption to ensure the existence of separating equilibria.

Definition 3: If a univariate random variable θi has a twice continuously differentiable

density function fi(θi, α) where α ∈ R is an indexing parameter, then fi(θi, α) is said to have the

monotone likelihood ratio property if:

∂2 ln[fi(θi, α)]
∂θi∂α

≥ 0. (4)

Finally, in models of voting, the assumption that agents have sp preferences over the

alternatives of the choice set becomes critical to avoid the Condorcet Paradox, the well known

cyclic result in defining social preferences. Total positivity ensures that such critical assumption is

preserved if preferences are aggregated across individuals.
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Definition 4: A function fi(θi) is single-peaked if there exists a unique θ?
i ∈ Θ0

i ⊆ R such

that f ′i(θi) > 0 ∀θi ≤ θ?
i and f ′i(θi) < 0 ∀θi ≥ θ?

i .

2.1 Basic Composition Formula

It is well known that if A = BC and A, B, and C are square matrices, then |A| = |B| · |C|. If B

and C are not square, it is possible to express the determinant of any minor of A as the sum of

products of minors of B and C. The Basic Composition Formula is the continuous counterpart to

these relationships. Thus, to begin, let consider the product of rectangular matrices:

Am×m = Bm×kCk×m. (5)

Next, let denote the determinant of an arbitrary minor of order p of A obtained by including rows

1 ≤ i1 < i2 < . . . < ip ≤ m and columns 1 ≤ j1 < j2 < . . . < jp ≤ m, and such that p ≤ m:

A

i1, i2, . . . , ip

j1, j2, . . . , jp

 ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ai1j1 ai1j2 · · · ai1jp

ai2j1 ai2j2 · · · ai2jp

...
...

. . .
...

aipj1 aipj2 · · · aipjp

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

k∑
t=1

bi1tctj1
k∑

t=1
bi1tctj2 · · ·

k∑
t=1

bi1tctjp

k∑
t=1

bi2tctj1
k∑

t=1
bi2tctj2 · · ·

k∑
t=1

bi2tctjp

...
...

. . .
...

k∑
t=1

biptctj1
k∑

t=1
biptctj2 · · ·

k∑
t=1

biptctjp

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (6)

After inspecting the righthand term of equation (6), it is evident that the determinant of any minor

of A can be written as a function of the elements of B and C. Indeed, the Binet-Cauchy formula

expresses the determinant of any minor of order p of the product of two rectangular matrices, B

and C, as the sum of the products of all possible minors of order p of B and C:

A

i1, i2, . . . , ip

j1, j2, . . . , jp

 =
∑

· · ·
∑

k1<k2<···<kp

B

 i1, i2, . . . , ip

k1, k2, . . . , kp

C

k1, k2, . . . , kp

j1, j2, . . . , jp

 . (7)
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This notation is useful to characterize whether a bivariate function g(x, y) : R2 → R is

totally positive as the elements of A are replaced with g(x, y) evaluated over two linearly ordered,

one-dimensional sets, X and Y .

Definition 5: A function g(x, y) of two variables ranging over ordered sets X and Y ,

respectively, is said to be totally positive of order n (TPn) if for all x1 < x2 < . . . < xm, xi ∈ X ⊆ R;

and for all y1 < y2 < . . . < ym, yi ∈ Y ⊆ R; and all 1 ≤ m ≤ n:

g

x1, x2, . . . , xm

y1, y2, . . . , ym

 ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

g(x1, y1) g(x1, y2) · · · g(x1, ym)

g(x2, y1) g(x2, y2) · · · g(x2, ym)
...

...
. . .

...

g(xm, y1) g(xm, y2) · · · g(xm, ym)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≥ 0. (8)

Observe that if g(x, y) is TPn this condition requires that all minors of order m ≤ n

and not only the principal minors to be non-negative. The major practical significance of totally

positive functions is that their smoothness properties (continuity, boundedness, and growth rate)

are preserved under the composition operation.

Lemma 1: Let X, Y , and Z be three compact sets defined on the real line. Let M(x, y),

K(x, z) and L(z, y) be Borel measurable functions of two variables; x ∈ X; y ∈ Y ; dFz(z) be a

sigma-finite measure for z ∈ Z; and the following integral converges absolutely:

M(x, y) =
∫
Z

K(x, z)L(z, y)dFz(z), (9)

then if K(x, z) and L(z, y) are both TPn, the composition M(x, y) is also TPn.

Proof: Without loss of generality, let n = 2. By definition of TP2, the composition

M(x, y) defined in (9) has to be such that ∀x1, x2 ∈ X ⊆ R and ∀y1, y2 ∈ Y ⊆ R, such that for

x1 < x2 and y1 < y2, the following condition holds:
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∣∣∣∣∣∣∣
M(x1, y1) M(x1, y2)

M(x2, y1) M(x2, y2)

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣

∫
K(x1, z)L(z, y1)dFz(z)

∫
K(x1, z)L(z, y2)dFz(z)

∫
K(x2, z)L(z, y1)dFz(z)

∫
K(x2, z)L(z, y2)dFz(z)

∣∣∣∣∣∣∣∣∣∣∣

=
∫∫

z1<z2

∣∣∣∣∣∣∣
K(x1, z1) K(x1, z2)

K(x2, z1) K(x2, z2)

∣∣∣∣∣∣∣ ·
∣∣∣∣∣∣∣
L(z1, y1) L(z2, y1)

L(z1, y2) L(z2, y2)

∣∣∣∣∣∣∣dFz(z1)dFz(z2) ≥ 0,

(10)

where the last inequality is the Basic Composition Formula relating compositions of totally positive

functions after evaluating the matrix product (6) in a continuum rather than on linearly ordered

sets. The Basic Composition Formula is then the continuous extension of the Binet-Cauchy formula

(8).7 From equation (10) it is immediate to show that if K(x, z) is TPk and L(x, y) is TPl, then

M(x, y) is TPm where m = min{k, l}.

2.2 Preservation Results for Convolution of Log-Concave Distributions

In many economic models several signals can be combined into a single one as follows:

θ0 = θ1 + θ2. (11)

This simple aggregation of independent signals is quite general and can accommodate all those

situations where monotone transformations of utility functions represent the same set of preferences

and convey the same economic implications. Lotteries and uncertainty are notable exceptions: the

concavity of the utility function captures the degree of risk aversion of individuals, and thus, a

monotone transformation will not represent the same preferences. But for all other cases where

results do no depend on specific functional form for the utility function, it is sufficient to consider

that type components simply add up to define the single-dimensional aggregate type.

7 The proof of this result, which is sketched in Karlin (1968, §1.2), builds around the complete proof of the
Binet-Cauchy formula by Gantmacher (1959, §1.2.4-1.2.5).
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I assume that θ1 and θ2 are stochastically independent. Thus, the distribution of the

aggregate θ0 is defined by the convolution:8

F0(θ0) =
∫
Θ2

F1(θ0 − θ2)dF2(θ2). (12)

The structure of equations (11)-(12) captures the idea that the effect of several sources of indi-

vidual heterogeneity simply combine into a single money valued magnitude that characterizes the

individual reservation price of agents. Regardless of whether different type dimensions capture the

effect of taste for different quality of products, the aggregation of equation (11)identifies non-price

driven shifts of individual demands for this product.

An important group of totally positive functions defines the distribution of θ0 as the convo-

lution of the distributions of θ1 and θ2 according to equations (11)-(12). The set of totally positive

functions in translation is known as Pólya frequency functions. The corresponding properties of

convolutions of Pólya frequency functions are particular versions of those of composition of totally

positive functions described above.9

Definition 6: A function g(z) is a Pólya frequency function of order n (PFn) if for all

x1 < x2 < · · · < xm, xi ∈ X ⊆ R; and for all y1 < y2 < · · · < ym, yi ∈ Y ⊆ R; and all 1 ≤ m ≤ n:

g

x1, x2, . . . , xm

y1, y2, . . . , ym

 ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

g(x1 − y1) g(x1 − y2) · · · g(x1 − ym)

g(x2 − y1) g(x2 − y2) · · · g(x2 − ym)
...

...
. . .

...

g(xm − y1) g(xm − y2) · · · g(xm − ym)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≥ 0. (13)

8 Equation (12) indicates that the distribution F1(θ1) smears the effect of θ2 on the support of θ0 according
to the rule of the distribution F1(θ1). Reversing indices we would characterize distribution F0(θ0) as spreading the
effect of θ1 according to the distribution of θ2.

9 Observe that equation (9) becomes the convolution case of equation (12) when M(θ0, θ1) = F0(θ0),
K(θ0, θ2) = F1(θ0 − θ2), L(θ2, θ1) = 1, and dFz is replaced by dF2.
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Lemma 2: Let f1(θ1) and f2(θ2) be PFn, and θ1 and θ2 be stochastically independent, then

the following convolution is also PFn:

f0(θ0) =
∫
Θ2

f1(θ0 − θ2)f2(θ2)dθ2. (14)

This result is the equivalent of Lemma 1 for the class of Pólya frequency functions. The

remaining results of this section show the preservation of key properties of the distribution of

signals under convolution by exploiting the equivalence between log-concavity and the family of

Pólya frequency functions of order 2.

Lemma 3: A twice continuously differentiable function g(z) is PF2 if and only if g(z) > 0

∀z ∈ Θ0 ⊂ R and g(z) is log-concave on R.

Proof: Since g(z) > 0 ∀z ∈ Θ0 ⊂ R, it follows from Definition 1 that a continuously

differentiable function g(z) is log-concave if and only if g′(z)/g(z) is monotone decreasing in R.

Next, without loss of generality, assume x1 < x2 and 0 = y1 < y2 = ∆. Then, from the definition

of PF2 in equation (13) and making use of common properties of determinants, the following

inequality holds:

lim
∆→0

1
∆
·

∣∣∣∣∣∣∣
g(x1) g(x1−∆)

g(x2) g(x2−∆)

∣∣∣∣∣∣∣= lim
∆→0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

g(x1)−g(x1−∆)

∆
g(x1−∆)

g(x2)−g(x2−∆)

∆
g(x2−∆)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
g′(x1) g(x1)

g′(x2) g(x2)

∣∣∣∣∣∣∣ ≥ 0, (15)

which, given g(z) > 0, proves that ∀z ∈ Θ0 ⊂ R, g′(z)/g(z) is monotone decreasing in R.

By imposing the log-concavity assumption on the probability density functions of θ1 and

θ2, we not only identify a wide class of distributions with nice properties for economic modeling
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but also ensure that the distribution of θ0 shares those properties. These results are presented in

the following proposition and corollary.

Proposition 1: If the probability density function fi(θi) is twice continuously differentiable

and log-concave, then:

(a) Fi(θi) is log-concave,

(b) F i(θi) = 1− Fi(θi) is log-concave,

(c) Fi(θi) is ihr in θi on {θi ∈ Θi : Fi(θi) < 1},

(d) li(θi) = fi(θi)/Fi(θi) is decreasing in θi on {θi ∈ Θi : Fi(θi) > 0},

(e) fi(θi) is sp.

Proof: Lemma 3 ensures that fi(θi) is PF2. finally, in order to prove parts (a) and (b) of

this Proposition let first study the total positivity properties of the function δ : R → {0, 1} defined

as follows:

δ(x− y) =

0 if x < y,

1 otherwise.
(16)

From Definition 6, δ(x− y) is PF2 if ∀x1, x2 ∈ X ⊆ R and ∀y1, y2 ∈ Y ⊆ R, such that x1 < x2 and

y1 < y2, the following condition holds:

∣∣∣∣∣∣∣
δ(x1 − y1) δ(x1 − y2)

δ(x2 − y1) δ(x2 − y2)

∣∣∣∣∣∣∣ ≥ 0. (17)

A simple analysis of all possible cases shows that δ(x − y) is PF2. It is then straightforward to

show that δ̂(x− y) = 1− δ(x− y) is also PF2. By Lemma 2, γ̂(x), the convolution of δ̂(x− θi) and

fi(θi) is PF2. Hence, evaluating at x = θi, we have:

γ̂(θi) =
∫
R

δ̂(θi − z)fi(z)dz =

θi∫
−∞

fi(z)dz = Fi(θi), (18)
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because δ̂(θi − z) = 1 only if θi < z, and therefore the cumulative distribution function Fi(θi) is

PF2. Similarly, γ(x) the convolution of δ(x− θi) and fi(θi) is also PF2, which in this case implies

that at x = θi:

γ(θi) =
∫
R

δ(θi − z)fi(z)dz =

∞∫
θi

fi(z)dz = F i(θi), (19)

because δ(θi − z) = 1 only if θi ≥ z, and the survival function 1 − Fi(θi) is also PF2. To prove

part (c), note that by Definition 2, it follows that the hazard rate is ri(θi) = −F ′i(θi)/F i(θi) on

{θi ∈ Θi : Fi(θi) < 1}, which has to be increasing in Θi because by part (b) of this Proposition,

F i(θi) is log-concave, and according to Definition 1, this implies that the quotient F ′i(θi)/F i(θi) is

decreasing in Θi. Similarly, to prove part (d), note that part (a) of this Proposition ensures that

Fi(θi) is log-concave, which by Definition 1 implies that l′i(θi) ≤ 0. In order to prove part (e),

observe that since fi(θ) is log-concave, for x1 < x2. Definition 1 requires:

f ′i(x1)
fi(x1)

≥ f ′i(x2)
fi(x2)

, (20)

or equivalently: ∣∣∣∣∣∣∣
f ′i(x1) fi(x1)

f ′i(x2) fi(x2)

∣∣∣∣∣∣∣ ≥ 0. (21)

Assume that θ?
i is such that f ′i(θ

?
i ) = 0. If θ?

i = x2, then condition (21) implies that f ′i(x1)fi(θ?
i ) ≥ 0.

Since fi(θ?
i ) > 0, it must be the case that f ′i(x1) ≥ 0 for x1 < θ?

i . Conversely, if θ?
i = x1, then

−f ′i(x2)fi(θ?
i ) ≥ 0. Thus, it must be the case that f ′i(x2) ≤ 0 for x2 > θ?

i . Therefore, if θ?
i exists,

fi(θi) is increasing for values of θi < θ?
i and decreasing for θi > θ?

i . Otherwise, if θ?
i does not exists,

fi(θi) is either monotone increasing or decreasing. Thus, fi(θi) is sp.

The following Corollary shows that all the above properties are preserved under convolution,

and thus, the requirement that the distributions of each type component is log-concave suffices for
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all distributions involved to be well behaved. Further, by induction, these results extend to arbitrary

finite sums or independent random variables.

Corollary 1: If the probability density functions fi(θi), i = 1, 2, are twice continuously

differentiable and log-concave, and θ1 and θ2 are stochastically independent, then:

(a) f0(θ0) is twice continuously differentiable and log-concave,

(b) F0(θ0) is log-concave,

(c) F 0(θi) = 1− F0(θi) is log-concave,

(d) F0(θ0) is ihr in θ0 on {θ0 ∈ Θ0 : F0(θ0) < 1},

(e) l0(θ0) = f0(θ0)/F0(θ0) is decreasing in θ0 on {θ0 ∈ Θ0 : F0(θ0) > 0},

(f) f0(θ0) is sp.

Proof: By Lemma 3, f1(θ1) and f2(θ2) are both PF2. Thus, Lemma 2 ensures that

f0(θ0) is also PF2. Part (a) results from applying Lemma 3 again to the convolution density

function f0(θ0). Since the premises of Proposition 1 are now fulfilled by f0(θ0), parts (b)-(f) follow

straightforwardly from its application.

2.3 Quadratic Forms

While results of the previous section are widely applicable, there are situations where specific

functional forms are needed to identify additional features of preferences or technology such as

risk aversion or returns to scale. Thus, at least ideally, we would like to establish necessary and

sufficient conditions for general aggregation rules θ0 = T (θ1, θ2) : R2 → R that preserve ihr, mlr,

and sp under composition. Unfortunately such results are not available for general aggregation

rules.10

10 Consider the case of the ratio of two standard uniform distributions. Uniform distributions are log-concave.
However, the distribution of their ratio is not. The probability density function of the ratio of two uniform distributions
is f0(θ0) = 0.5 for θ0 ≤ 1 and f0(θ0) = 1/(2θ0)

2 for θ0 > 1. See Springer (1979, §4.1).
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It is still possible to ensure the preservation of log-concavity when we focus on quadratic

forms of log-concave distributed variables, e.g., Springer (1979, §5.3). This offers at least the

possibility of dealing with general transformations θ0 = T (θ1, θ2) through second order Taylor

polynomial approximations. Let consider the following quadratic aggregation rule of θ1 and θ2:

θ0 =
(
θ1 θ2

) a11 a12

a21 a22


θ1
θ2

 , (22)

or equivalently,

θ0 =
(
θ̃1 θ̃2

) λ1 0

0 λ2


θ̃1
θ̃2

 , (23)

after finding the orthonormal bases that orthogonally diagonalizes (22):

θ1
θ2

 =

p11 p12

p21 p22


θ̃1
θ̃2

 . (24)

Notice that after inverting this last expression we can write:

θ̃i = di1θ1 + di2θ2, i = 1, 2. (25)

The densities of θ̃i are the convolution of two log-concave densities, which Corollary 1 proves to be

also log-concave. Next, because of the diagonalization (23):

θ0 = λ1θ̃
2
1 + λ2θ̃

2
2. (26)

Since the distributions of θ̃i are log-concave, their square are also log-concave. Applying the results

of Corollary 1 once again ensures that the density of the aggregate θ0 is also log-concave. This
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effectively extends the applicability of the preservation results discussed in this section beyond the

addition of types.11

3 Models of Asymmetric Information

There are several potential applications of the preservation results discussed in the previous sec-

tion. Here I will first review models that make a choice between addressing several, or just one

aggregate adverse selection parameter in the context of asymmetric information models. Second, I

address whether type aggregation leads to more profitable mechanisms, thus providing a possible

explanation to the observed preference for contracts involving bundling or some sort of informa-

tion aggregation. I discuss applications to nonlinear pricing, regulation, multi-unit auctions, and

informational alliances.

3.1 Dimensionality Issues

Under the assumption of aggregation of type components into a single-dimensional type, we can

adopt two alternative modeling approaches: we can just impose regularity conditions on prefer-

ences and distributions involving θ0, or ensure that the combination of relevant properties of the

distribution of components θ1 and θ2 are preserved for the aggregation of types so that the solution

of the model in terms of θ0 is well behaved. Choosing to make assumptions on the distributions

of θ1 and θ2, instead of on the distribution of θ0 is something that entirely depends on the nature

and goals of each particular model. This section applies properties of totally positive functions to

indicate how such aggregation could be performed.

11 The product of two log-concave densities f(θi) and g(θi), i.e., h(θi) = f(θi)g(θi) is also log-concave because
log h(θi) = log f(θi) + log g(θi) are all concave functions of θi as concavity is closed under addition. See Rockafellar
(1970, §5). It is straightforward to extend the result for the case of power of density functions. On log-concavity of
products of log-concave functions see also An (1998, §4).
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3.1.1 Auctions. In analyzing the effect of the auctioneer’s information disclosure on the optimal

bids, Goeree and Offerman (2003) consider an auction model with both private and common values:

si =
v

n
− ci, (27)

so that with n bidders, optimal bids are a function of the surplus θ0 = si, which includes the

common value signal θ1 = v/n and the private value cost θ2 = −ci. For the model to be well

behaved, it is necessary that bids are increasing in the surplus of the bidder. Since the distribution

of the surplus signal is the convolution of the distributions of the common and private value signals,

Corollary 1 ensures that such convolution is log-concave as long as the distributions of v/n and c

are log-concave. This result avoids having to assume that the joint distribution of values is bivariate

log-concave as these authors do.

3.1.2 Common Agency. In the common agency model of Biais et al. (2000), θ1 represents the

investor’s evaluation of the asset’s liquidation value, while θ2, is the initial position in the risky

asset. Both dimensions aggregate into a single parameter θ0 according to equation (11), thus

representing the marginal valuation of an agent for the asset to be traded and simplifying the

design of competitive mechanisms. Corollary 1 ensures that this problem is well defined for the

aggregate type θ0, as long as the density functions of the type component are log-concave, something

that Biais et al. (2000) assume. Actually, as discussed later in Section 3.2.1, their results will hold

for the broader family of ihr distributions.

3.1.3 Empirical Models of Nonlinear Pricing Competition. Ivaldi and Martimort (1994) solve and

estimate a model of nonlinear price competition by focusing on a firm-specific aggregate type.

They first assume that type components θ1 and θ2 represent the taste parameters for horizontally

differentiated products:
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U(q1, q2, θ1, θ2, λ) = θ1q1 + θ2q2 −
1
2
q21 −

1
2
q22 + λq1q2 − P1 − P2, (28)

and next, competing firms are assumed to use quadratic tariffs such as:

Pj(qj) = αj + βjqj +
γj

2
q2j . (29)

Then, substitution of the first order condition for the choice of qj into the first order condition for

the choice of qi defines the sufficient single-dimensional statistic for firm i as follows:

zi = θi +
λθj

1 + γj
. (30)

Subject to the competing firm using a quadratic tariff, Corollary 1 ensures that the distribution

of each firm’s aggregate type will be well behaved as long as the distributions of θ1 and θ2 are

log-concave.

3.1.4 Regulated Multiproduct Monopolist. A final example where we can apply some of the results

of Section 2 is the regulated multiproduct firm model of Laffont and Tirole (1993, §3). In this model,

the monopolist’s several plants may have different technological parameters θi that remain private

information, while the regulator observes the firm’s cost C, output vector q, and cost-reducing

effort e. For instance, in order to ensure the incentive-pricing dichotomy of regulatory contracts

(so that pricing does not influence the allocation of the cost reducing effort), it is necessary to

aggregate the firm’s technological parameter (θ1, . . . , θn) into a single index θ0. Laffont and Tirole

(1993, §3.7.2) apply the aggregation theorems of Blackorby and Schworm (1984, §3) to identify

technology conditions for the regulated firm cost function to be written as:

C(θ1, . . . , θn, e,q) = C(Λ(θ1, . . . , θn), e,q). (31)
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Still, the aggregate type θ0 = Λ(θ1, . . . , θn) has to be such that its distribution is ihr.12 We therefore

need to care about the preservation of distribution properties of these asymmetric information

parameters. Corollary 1 ensures that this is the case whenever the densities fi(θi) are log-concave

and θ0 = θ1 + · · · + θn. This result can be easily extended to include the case where θ0, the

productivity index of the firm, is some weighted average of the productivity of each plant.13

Obviously these are only sufficient, not necessary, conditions to ensure that the distribution F0(θ)

is ihr. As in the common agency model of Biais et al. (2000), it would suffice to focus on the

less restricted family of ihr distributions because this property is also preserved under convolution

regardless of the log-concavity of the corresponding densities.14

3.2 Bundling

Multiproduct monopolists must decide whether to sell their products separately or in a bundle.

In both cases, and in order to reduce consumers’ informational rents, a monopolist may engage

in nonlinear pricing. In general, bundling makes use of the joint distribution of the willingness

to pay for each product (θ1 and θ2), while the unbundled solution accounts for each distribution

separately. In the present framework, I use the convolution distribution because agents’ valuation

of the bundle can be represented by the aggregation of the independent willingness to pay for each

one of its components, θ0 = θ1 +θ2. Therefore, in order to explain why bundling is preferred to

independent pricing, I must be able to compare the performance of mechanisms using different

distributions.15

12 Laffont and Tirole (1993) simply impose this condition. The same ad hoc approach is taken by Baron and
Besanko (1992, §3) regarding the log-concavity of the distribution of the aggregate type.

13 This is a consequence of the preservation of log-concavity when the domain is re-scaled through some affine
transformation: if f(x) is PF2, then g(y) = f(ax + b) is also PF2 for real values of a and b. See Karlin (1968, §7.1).

14 See Barlow et al. (1963, Theorem 3.2) and Karlin (1968, §3.5, Theorem 5.3). This result has been used by
Miravete (2005, Proposition 4) in the context of models of asymmetric information.

15 The multidimensional screening literature has frequently found bundling to be optimal even when types are
not correlated. See Adams and Yellen (1976), McAfee et al. (1989), and Spence (1980). In a related paper that does
not explicitly aggregate types, Sibley and Srinagesh (1997) show that screening multidimensional consumers through
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A well known sufficient condition to compare optimal solutions of different mechanisms is

that they induce a hazard rate ordering of the corresponding type distributions.16 Provided that

all consumers are served by the monopolist, the more favorable the distribution of types (the lower

the hazard rate), the higher is the mark-up of the optimal tariff for every single consumer type.

To illustrate this point, let U(x, θ) represent the preference of agents for the consumption of x,

which is produced at marginal cost c, and where F (θ) is the distribution of the adverse selection

parameter θ. The optimal pricing solution can be written as:

p?(θ) = c+
1− F (θ)
f(θ)

Uxθ(x, θ). (32)

Proposition 2: For any well behaved nonlinear pricing problem the optimal mark-up is

inversely related to the hazard rate of the distribution of θ.

Proof: Straightforward since:

p?(θ)− c

p?(θ)
=

Uxθ(x, θ)
r(θ) · c+ Uxθ(x, θ)

, (33)

and the single-crossing property must hold, i.e., Uxθ(x, θ) > 0.

Therefore, if rF (θ) < rG(θ) the pricing mechanism based on the distribution F (θ) is more

powerful than if G(θ) is used, thus further reducing the informational rent of intramarginal agents

and increasing overall the expected payoff of the principal. Since an increasing hazard rate of the

distribution of type and the single-crossing property ensures that x?(θ) ≥ 0, it easily follows from

pointwise differentiation that:

the use of a single two-part tariff is welfare enhancing relative to the use of separate two-part tariffs for each product
whenever preference parameters are perfectly correlated across goods.

16 See Laffont and Tirole (1993, S1.4-1.5) and Maskin and Riley (1984, §4).
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∂Eθ[(p?(θ)− c) · x?(θ)]
∂r(θ)

=
∂

∂r(θ)

θ∫
θ

y∫
θ

[
Uxθ(x, z)
r(z)

· x?(z)
]
dzdF (y) < 0. (34)

3.2.1 Aggregation of Types and Good News. We can now show that the principal always prefers

to screen agents with respect to the aggregate signal θ0 than limiting itself to a subset of the

available signals. It is intuitive that using all the information available will always induce a more

accurate screening of agents, thus reducing their informational rents. Although in general models

of multidimensional screening are difficult to evaluate, the suggested aggregation of types leads to

aggregate distributions that are more favorable than the distributions of any of its components,

thus identifying the source of informational advantage of the bundled solution.

Milgrom (1981) first discussed the notion of “favorableness” in models of asymmetric infor-

mation. More favorable distributions (hazard rate dominance) put more weight into higher types,

from which the profitability argument of the previous paragraph follows. One of the most important

contributions of the present paper is to isolate conditions under which the “favorableness” relation

arises endogenously through the aggregation of multiple signals. Thus, results from Proposition 1

and Corollary 1 ensure that the principal can induce a separating equilibrium both with bundling

and independent screening. The comparison of these different solutions relies, according to Proposi-

tions 2 on the hazard rate ordering induced by convolutions. The following two propositions explore

conditions leading to distributions of the sufficient aggregate type characterized with smaller hazard

rate than the distribution of any of its components.

Proposition 3: Let Fi(θi) be ihr, i.e., r′i(θi) > 0 on {θi ∈ Θi ⊂ R : Fi(θi) < 1}, for

i = 1, 2. Let F0(θ0) denote the convolution distribution of θ0 = θ1 + θ2, with hazard rate r0(θ0).

Then r0(θ) ≤ min{r1(θ), r2(θ)} on {θ ∈ Θ ⊂ R : Fi(θ) < 1; i = 0, 1, 2}.
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Proof: By the definition of convolution, it follows that:

r0(θ) =

∫
Θj

fi(θ − z)fj(z)dz

1−
∫
Θj

Fi(θ − z)fj(z)dz
=

∫
Θj

fi(θ − z)fj(z)dz∫
Θj

[1− Fi(θ − z)]fj(z)dz

=

∫
Θj

ri(θ − z)[1− Fi(θ − z)]fj(z)dz∫
Θj

[1− Fi(θ − z)]fj(z)dz
≤

∫
Θj

ri(θ)[1− Fi(θ − z)]fj(z)dz∫
Θj

[1− Fi(θ − z)]fj(z)dz
= ri(θ),

(35)

because ri(θ) ≥ 0 and r′i(θ) ≥ 0, ∀θ ∈ Θ.

Distribution F0(θ) is more favorable than Fi(θ) if F0(θ) ≤ Fi(θ), ∀θ ∈ Θ. Propositions 4

and Corollary 2 below ensure that if r0(θ) ≤ ri(θ), the distribution of the aggregate type first order

stochastically dominates the distribution of its components whenever they share the same lower

bounded support, and/or when they are restricted to R+.

Proposition 4: If r0(θ) ≤ ri(θ) on {θ ∈ Θ ⊂ R : Fi(θ) < 1; i = 0, 1, 2}, then θ0 first order

stochastically dominates θi.
17

Proof: Since ri(θi) = −d log[1 − Fi(θi)]/dθi, solving differential equation (3) with initial

condition Fi(θ) = 0 leads to the following inequality ∀θ ∈ Θ:18

1− F0(θ) = exp

− θ∫
θ

r0(z)dz

 ≥ exp

− θ∫
θ

ri(z)dz

 = 1− Fi(θ), (36)

and therefore F0(θ) ≤ Fi(θ) ∀θ ∈ Θ ⊂ R, which is the definition of first order stochastic dominance

of θ0 over θi.

17 The converse result is not true. Maskin and Riley (1984, §4) show that the hazard rate ordering is necessary
to rank the profitability of screening mechanisms. They show that stochastic dominance alone does not lead to higher
expected profits. Shaked and Shanthikumar (2007, Theorem 1.B.1) establishes the relationship between hazard rate
ordering and first order stochastic dominance.

18 Observe that the assumption of a common support for all distributions (at least with a common lower
bound) is necessary. Otherwise condition (36) may not hold for some θ ∈ Θ.
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Corollary 2: If r0(θ) ≤ ri(θ) on {θ ∈ R+ : Fi(θ) < 1; i = 0, 1, 2}, then θ0 first order

stochastically dominates θi.

Corollary 2 is of particular interest for many economic models of bundling. If type dimen-

sions represent an individual’s marginal willingness to pay for each product, they can be easily

restricted to take only positive values, as we do not expect that potential buyers enjoy negative

utility from consumption. Therefore, the aggregate type, also a positive magnitude, represents the

marginal willingness to pay for the bundle.

Many other agency problems could define environments where the support of type compo-

nents is constrained in a natural way. For instance, we could think of θ1 ∈ R+ as general skills of

workers before being hired (e.g., acquired through education and/or working experience in other

jobs). If hired, workers will develop some specific skills and abilities due to learning by doing, and

therefore increase their productivity. It is not unreasonable within this framework to exclude the

possibility of negative learning, and thus θ2 would also be restricted to take only positive values.

The principal could then design contracts contingent on either the credentials and qualifications

of the worker, or on the actual performance after learning.19 The previous results show that the

principal will prefer to tie workers’ compensation to their performance. Similarly, favorableness

arises endogenously in the agency model of Laffont and Tirole (1993, §3) where the distribution

of the aggregate productivity index is more informative than any of the indices of separate plans

independently considered. Thus, contracts based on the distribution of the aggregate type will be

more powerful and lead to higher expected profits.

3.2.2 Application: Supply of Complementary Products. Consider the following example. The

liberalization of the electricity industry aims to introduce competition in power generation while

transmission remains regulated. Assume that firm 1 is in charge of transmission while firm 2 is

19 A model that shares many of these features in Regulatory Economics is Sappington (1982).
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the single power generating firm. These firms have a constant marginal cost of production θ1

and θ2 that remain private information, so that the regulator only knows their distributions. The

regulator could contract separately with these two firms to ensure proper provision of electricity

(informational decentralization). Alternatively, it could contemplate bundling generation and

transmission (informational consolidation). In that case, the resulting vertically integrated firm

would be characterized by constant marginal cost of production θ0 = θ1 + θ2. If the regulator

unbundles generation and transmission of electricity, the optimal price per unit of power in the

component supply contract takes the form:

pU (θ1, θ2) = θ1 + θ2 +
(
F1(θ1)
f1(θ1)

+
F2(θ2)
f2(θ2)

)
. (37)

Similarly, and if marginal costs are independently distributed, the optimal price for the integrated

supply contract is:

pB(θ0) = θ0 +
F0(θ0)
f0(θ0)

, (38)

where F0(θ0) is the convolution distribution defined in equation (12). The following result, dealing

with the relative degree of log-concavity of these distributions offers some guidance in evaluating

the relative performance of these alternative contracts.

Proposition 5: Let Fi(θi) be log-concave, i.e., l′i(θi) < 0 on {θi ∈ Θi ⊂ R : Fi(θi) < 1},

for i = 1, 2. Let F0(θ0) denote the convolution distribution of θ0 = θ1 + θ2, such as l0(θ0) =

f0(θ0)/F0(θ0). Then l0(θ) ≥ max{l1(θ), l2(θ)} on {θ ∈ Θ ⊂ R : Fi(θ) < 1; i = 0, 1, 2}.

Proof: By the definition of convolution and substituting li(θi) = fi(θi)/Fi(θi):

l0(θ) =

∫
Θj

li(θ − z)Fi(θ − z)fj(z)dz∫
Θj

Fi(θ − z)fj(z)dz
≥

∫
Θj

li(θ)Fi(θ − z)fj(z)dz∫
Θj

Fi(θ − z)fj(z)dz
= li(θ), (39)

because li(θ) ≥ 0 and l′i(θ) ≤ 0, ∀θ ∈ Θ.

– 26 –



The process of aggregation of information regarding the privately known marginal cost of

production of the different firms that would potentially consolidate into a single utility determines

which contract the regulator prefers. Contrary to the bundling of information in the previous

section, the evaluation of contracts (37)-(38) is more difficult because it involves θ0 as well as its

components θ1 and θ2. Baron and Besanko (1992, §5) identify a family of distributions, Fi(θi) =

K−1(a+bθi)1/b on Θi = [−a/b, (Kb − a)/b] for i= 1, 2 and a, b,K > 0, for which θ0 = θ1+θ2 is a

sufficient aggregate statistic so that F1(θ1)
f1(θ1) +F2(θ2)

f2(θ2) can be written as an explicit function of θ0 only,

thus allowing to compare contracts (37) and (38).

Gilbert and Riordan (1995) suggest a more general power distributions to compare contracts

Fi(θi)=(θi/Ai)ti on Θi =[0, Ai], which may fulfill the following condition:

F0(θ0)
f0(θ0)

≤ Fi(θ0 − θj)
fi(θ0 − θj)

+
Fj(θj)
fj(θj)

, ∀ 0 < θj ≤ θ0 ≤ Ai; i, j = 1, 2. (40)

When this condition holds the regulator pays a higher price for the provision of these complementary

goods under the unbundled contract because independent suppliers have an incentive to overstate

their cost. The reason is the log-concavity of Fj(θj), i.e., l′j(θj) < 0, and thus with a small θj the

probability that the other firm has a lower marginal cost increases. When the bundled contract is

enforced, this informational externality disappears and reduces the suppliers’ informational rents.

Notice that according to Proposition 5, condition (40) holds for any convolution of log-

concave distributions if θ1 or θ2 reach their lower boundary. Thus, it is more likely that condition

(40) holds by a large set of log-concave distributions, whenever one of the two firms that may

consolidate into a conglomerate has a marginal cost “close to zero,” i.e., being almost the most

efficient type that the regulator may expect. The lower θ2 is relative to θ1, the larger the incentive

for firm 1 to overstate her marginal cost, and therefore the larger the potential benefits for the

regulator from offering an integrated supply contract.
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3.2.3 Application: Multi-Unit Auctions. There are several issues that condition whether sellers

prefer to auction a bundle of goods instead of auctioning them separately: the number of bidders,

the number of products, the distribution of types, and whether types are discrete or continuous.

In this section I use properties of convolutions of log-concave densities of continuous types to show

how the bundling decision depends on the number of goods, number of bidders, and the properties

of the related distributions. These results illustrate how bundling arises in equilibrium.

Maskin and Riley (1988) show that when buyers are not restricted to have unit demands,

the seller is always better off bundling the sales of additional units. In this case, agents differ in their

preference intensity for the good, and since types are single-dimensional, bundling is equivalent to

nonlinear pricing. Palfrey (1983) first considered whether a seller’s revenues would be higher if he

auctions several products together or separately. Independently distributed willingness to pay for

each product are added –as in equation (11)– to define buyers’ value of the bundle. He concludes

that bundling is optimal when there are only two sellers, although independent auctions would turn

optimal with a large number of bidders. Similarly, Armstrong (2000) also studies the joint auction of

heterogeneous products, thus requiring that types are multidimensional, but restricting the analysis

to the two-product binary type case.20 Armstrong agrees with Palfrey’s analysis that the optimal

auction depends on the number of bidders, but rejects the optimality of pure bundling auctions

even with only two bidders. Finally, Chakraborty (1999) applies some results on the statistical

theory of quantiles to show that, contrary to Palfrey’s analysis, the properties of distributions

affect the optimal choice between bundled or unbundled auctions, although he does not question

the optimality of bundling with only two bidders.

20 Armstrong (2000) also considers a hybrid of continuous/discrete type case although only when buyers’ utility
function are radial symmetric. In this case, incentive compatibility holds along the rays in which the type space is
divided, and properties of single-dimensional auctions carry over multidimensional ones. Avery and Hendershott
(2000) extend the analysis of the discrete case to include asymmetric distributions of preferences among consumers.
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The following analysis intends to reconcile some of these arguments. The expected winning

bid of a Vickrey auction with n bidders is:

E[Bi(θ)] =
∫
Θ

n(n− 1)θ[Fi(θ)]n−2[1− Fi(θ)]fi(θ)dθ = n(n− 1)
∫
Θ

θFn
i (θ)

l2i (θ)
ri(θ)

dθ. (41)

The auctioneer wants to sell J different goods. I will assume, without loss of generality, that

potential buyers’ taste are identically distributed for all these J products. The corresponding

densities are assumed to be log-concave. Then, the seller prefers to auction these J products

separately rather than as a bundle if the following condition holds:

n(n− 1)
∫
Θ

θ

[
Fn

0 (θ)
l20(θ)
r0(θ)

− JFn
i (θ)

l2i (θ)
ri(θ)

]
dθ < 0. (42)

This condition holds depending on the sign of the term between brackets, i.e., if:

[
F0(θ)
Fi(θ)

]n

< J

[
li(θ)
l0(θ)

]2 [
r0(θ)
ri(θ)

]
. (43)

Since the distribution of θ0 is the J-fold convolution of identical log-concave distributions, results of

previous sections can be immediately applied. Thus, Proposition 3 ensures that r0(θ)/ri(θ)<1, and

Proposition 5 does the same for li(θ)/l0(θ0)<1. Similarly, F0(θ)/Fi(θ)<1 because of Proposition

4. The left hand side of inequality (43) is a decreasing function of n for any value of θ while

the right hand side increases with the number of goods J , although it is bounded for any given

number of products. Therefore, for a given number of goods, it is always possible to find a large

enough number of bidders that makes the seller better off if he auctions these goods independently.

Thus, equation (43) shows that the optimal auction format depends monotonically on the number

of bidders and number of goods and that in general the larger the number of bidders relative to

the number of objects, the more likely it is that the independent auctions dominate bundling. The
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seller will only prefer the bundle auction when the number of bidders is small relative to the number

of goods to be sold, i.e., such as in the case of the FCC spectrum auctions.

3.3 Sequential Screening

The existence of different type components opens the possibility of sequential screening. Consumers

always know their ex-ante type θ1. Later, when they learn θ2, their ex-post type θ0 is defined as

their addition, without loss of generality. Thus, the actual type of consumers θ0, includes the

expected consumption θ1, and some type shock or prediction error θ2. The monopolist may screen

consumers through the use of nonlinear pricing based on their realized demand –bundling of type

components–, or alternatively he may screen consumers sequentially –unbundled solution–. In the

first stage, consumers have to choose a tariff option based on their expectation of future purchase

levels. Later, once the choice has been made and the individual demand is realized, each tariff

option introduces additional discounts or premia on the difference between expected and realized

demand. The key feature of optional tariffs is that when consumers sign up for any contract option,

they do not commit to a particular level of consumption as they are not fully aware of their own

type defined as the price independent component of demand that will eventually determine the

consumption level of each individual under each tariff regime.

3.3.1 Models of Expected Consumption. There are several papers that fit the described sequential

screening process. For instance, in models of Expected Consumption, such as those of Ausubel

(1991), Courty and Li (2000), Miravete (2002), and Miravete (2005), individual demands are subject

to independent and privately known shocks over time. The monopolist may offer a contract based

on agents’ actual realized demands, or alternatively a menu of optional contracts that define the

payment schedule before individual demands are realized, thus taking advantage of potentially

profitable effects of agent’s misperception of their future consumption.
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3.3.2 Regulation and Procurement. The possibility of errors in the appraisal of her own cost

function by the regulated firm allows regulatory agencies to consider mechanisms based either

on realized or expected costs. The literature on the optimality of linear contracts –for instance

Caillaud, Guesnerie, and Rey (1992), or Laffont and Tirole (1986)–, show that these simple contracts

are robust to the existence of an additive noise θ2 because it enters linearly in the objective function

so that neither the incentive compatibility and participation constraints are changed in expectations.

Uncertainty about agent’s own types may also be present in Procurement. Awarding procurement

contracts involves frequently firms bidding when they are uncertain about their future marginal

costs, as in Riordan and Sappington (1987). Alternatively, the government could ask for a share

of total future revenues or profits to the awarded franchisees, thus making transfers a function of

actual rather than expected costs.

3.3.3 Ex-Ante vs. Ex-Post Screening. Adding a temporal dimension to the bundling problem turns

the evaluation of the relative performance more difficult for several reasons. First, if θ1 is understood

as the expected value of the individual valuation θ0, then θ2 can be viewed as an estimation error

of the own individual valuation of the product. While θ1 can be easily assumed to be positive, θ2

could take negative values. Thus, the assumption of common support is violated, unless we impose

the unrealistic assumption of systematic underestimation of consumption, and therefore neither the

hazard rate ordering of Proposition 3, nor the profitability result of Proposition 2 can be applied

even when screening mechanisms are evaluated ex-post. Furthermore, the existence of type changes

makes possible that ex-post consumer types θ0 are ranked differently than ex-ante types θ1, thus

making the enforcement of incentive compatibility more difficult. The ranking of agents would be

the same ex-ante and ex-post only with a discrete number of types and very restricted class of type

shocks so that individual demands do not overlap for any realization of the shock, e.g., see Clay,

Sibley, and Srinagesh (1992).
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Second, even if the support of θ2 is restricted to either R+ or R− we cannot compare in

general the ex-ante and ex-post tariffs. In the first case, the type shock θ2 represents good news

leading to F0(θ) ≤ F1(θ) ∀θ ∈ R+, therefore making more likely that the bundled ex-post solution

is preferred to the ex-ante tariff. The opposite happens when θ2 represents bad news. Still, general

results cannot be stated and we normally have to rely on evaluations of specific cases because,

contrary to the literature on linear contracts, the distribution of θ2 affects the shape of the tariff

based on θ1 since it enters nonlinearly in the definition of the utility function of agents. Miravete

(2005, $4.4) evaluates the performance of an ex-post nonlinear tariff relative to a continuum of

ex-ante tariffs based on the distribution of θ1 (neglecting further screening of the type shock θ2),

as well as to a continuum of ex-ante fully nonlinear tariffs. Using empirical distributions of θ0, θ1

and θ2, it is shown that while a local monopolist generally prefer to offer a continuum of optional

nonlinear tariffs, it is welfare optimal to restrict the monopolist to use a continuum of two-part

tariffs.

4 Additional Applications

The previous section has reviewed results of existing models of adverse selection that make use

of preservation properties of totally positive functions. In this section I suggest two potential

extensions for models of moral hazard and voting.

4.1 Moral Hazard

Models of moral hazard require that optimal signals used by agents keep a one-to-one correspon-

dence with agents’ types, e.g., Holmström (1979) or Laffont (1989, §11). Milgrom (1981, §4) shows

that the critical assumption to ensure this result when the distribution of the signal conditional on

the type of agents is mlr. The present framework allows to consider situations where agents may
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engage in non-observable multidimensional efforts that affect the final level of output produced.

The key result is the equivalence between TP2 and mlr. In addition, this opens the possibility of

working with more complicated aggregation rules than simple summation of types. Preservation

results of Section 2.2 ensure that the composition of TP2 functions is also TP2. These results are

formalized in the following proposition and corollary.

Proposition 6: A twice continuously differentiable probability density function f(θi, α)

is TP2 in θi and the indexing parameter α ∈ R, if and only if it is mlr.

Proof: Density function f(x, α) > 0 is TP2 in x and α if for x1 < x2 and α1 < α2:

D =

∣∣∣∣∣∣∣
f(x1, α1) f(x1, α2)

f(x2, α1) f(x2, α2)

∣∣∣∣∣∣∣ ≥ 0. (44)

Assume, without loss of generality, that α1 = α, α2 = α+ ∆α, with ∆α > 0. Then, using common

properties of determinants it is straightforward to show:

D =

∣∣∣∣∣∣∣
f(x1, α) f(x1, α+ ∆α)

f(x2, α) f(x2, α+ ∆α)

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
f(x1, α) f(x1, α+ ∆α)− f(x1, α)

f(x2, α) f(x2, α+ ∆α)− f(x2, α)

∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f(x1, α)
f(x1, α+ ∆α)− f(x1, α)

∆α

f(x2, α)
f(x2, α+ ∆α)− f(x2, α)

∆α

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
·∆α ≥ 0.

(45)

Since ∆α > 0, it follows that:

Dα = lim
∆α→0

(
D

∆α

)
=

∣∣∣∣∣∣∣
f(x1, α) fα(x1, α)

f(x2, α) fα(x2, α)

∣∣∣∣∣∣∣ ≥ 0. (46)
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Proceeding similarly with x and assuming that x1 = x, x2 = x+ ∆x, with ∆x > 0, it follows that:

Dx =

∣∣∣∣∣∣∣
f(x, α) fα(x, α)

f(x+ ∆x, α) fα(x+ ∆x, α)

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣
f(x, α) fα(x, α)

f(x+ ∆x, α)− f(x, α)

∆x

fα(x+ ∆x, α)− fα(x, α)

∆x

∣∣∣∣∣∣∣∣∣∣∣
·∆x ≥ 0,

(47)

so that:

Dxα = lim
∆x→0

(
Dα

∆x

)
=

∣∣∣∣∣∣∣
f(x, α) fα(x, α)

fx(x, α) fxα(x, α)

∣∣∣∣∣∣∣ ≥ 0. (48)

But observe that:

Dxα = f2(x, α) · ∂
2 ln f(x, α)
∂x∂α

≥ 0, (49)

which according to Definition 3 holds if and only if f(x, α) > 0 is mlr.

Corollary 3: If fi(θi, αi), i = 1, 2, are mlr and θ1 and θ2 are independently distributed,

then the composition f0(θ0, α) defined according to equation (9) is also mlr.

Proof: Proposition 6 ensures that fi(θi, α), i = 1, 2, are TP2 while Lemma 1 ensures that

the composition of functions that are TP2 is also TP2. Thus, f0(θ0, α) is also mlr.

Thus, just like in the case of adverse selection, the principal may attempt to provide

incentives that induce an increase in all, or only a few of these effort dimensions.21 To analyze the

effect of the aggregation of signals, consider the following simple agency model. Let α denotes the

profit or output level. The principal and the agent split the output according to the sharing rule

s(α). The principal’s utility function G[α − s(α)] is increasing and concave, while the risk averse

agent’s utility function is U [s(α)] − θ such that U [·] is also increasing and concave. Holmström

(1979) shows that the optimal sharing rule solves:

21 Holmström and Milgrom (1987, §3) discuss the choice between a period-by-period or a contract that
aggregates the output over a set of periods of time, i.e., allowing agents to allocate their effort over time.
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G′[α− s(α)]
U ′[s(α)]

= s0 + s1 ·
∂ ln[f(θ, α)]

∂θ
, (50)

where s1 > 0, and the derivative of the right hand side is a local version of mlr. From here, the

sharing rule is increasing in α only if f(θ, α) is mlr. If the principal wants to provide incentives for

the use of a particular type of effort –perhaps more effective or specific than the others–, out of the

several dimensions of effort included in θ he has to offer a more rewarding contract. Restricting the

agent from the possibility of pooling different types of effort can only be made if she gets a bigger

share of the output. This result is formalized in the following proposition.

Proposition 7: Let fi(θi, α) be TP2 for i = 1, 2. Let f0(θ0, α) denote the composition

density of θ0 = T (θ1, θ2), where T (·) is continuous in all dimensions and such that Ti(θ1, θ2) =

∂T (θ1, θ2)/∂θi > 0, for i = 1, 2. Then:

∂ ln[f0(θ, α)]
∂θ

≤ ∂ ln[fi(θ, α)]
∂θ

. (51)

Proof: Because of continuity of θ0 = T (θ1, θ2), we can write θ1 = T−1(θ0, θ2). The

composition density then becomes:

f0(θ0, α) =
∫
Θ2

f1[T−1(θ0, θ2), α]f2(θ2)dθ2, (52)

so that,

∂ ln[f0(θ0, α)]
∂θ0

= [f0(θ0, α)]−1

∫
Θ2

∂ ln{f1[T−1(θ0, θ2), α]}
∂θ0

f1[T−1(θ0, θ2), α]f2(θ2)dθ2

≤ [f0(θ0, α)]−1

∫
Θ2

∂ ln{f1(θ0, α)}
∂θ0

f1[T−1(θ0, θ2), α]f2(θ2)dθ2

≤ ∂ ln{f1(θ0, α)}
∂θ0

,

(53)
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because by the inverse function theorem ∂T−1(θ0, θ2)/∂θ2 = [T2(θ1, θ2)]−1 > 0, so that θ0 ≥ θ1,

and because fi(θi, α) being mlr ensures that ∂ ln[f1(θ, α)]/∂θ ≥ 0.

4.1.1 Voting Models. Results of the previous section are applicable not only to screening problems.

For instance, Proposition 1 and Corollary 1 show that log-concave densities are also sp, and that

this property is also preserved under convolution. This result is suitable to be applied to substantial

issues in Political Economy since the preservation of single-peakedness of preferences is ensured.

If individual preferences are sp on a single-dimensional space of choice, Black (1948) median

voter theorem proves that there is a unique outcome under majority rule, and that it coincides

with the ideal profile of the voter at the median of the distribution. Proposition 1 proves that

single-peakedness is a feature of log-concave preferences. Using log-concavity of preferences, Caplin

and Nalebuff (1991) show that if the space of choices is multidimensional, the unique outcome under

a 64%-majority rule is the ideal profile of the mean voter. Preservation of single-peakedness is an

interesting result because it allows to ensure that politicians’s preferences will share the relevant

features of voters’ preferences. For instance, each fi(·) may represent the preference of an individual

for the provision of a public good net of her individual tax contribution. Thus, f0(·), the preference

of the representative that gets elected with the most votes, shares the same peakedness properties

than the electors that voted him. Therefore, these results make possible to study how voters’

preferences are mapped into political decisions when they are not adopted through a referendum

but by means of voting by elected representatives.

5 Concluding Remarks

This paper has shown the equivalence between PF2, log-concave, ihr, mlr, and sp distributions.

More importantly, these properties have been to be preserved under convolution, and further for
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type aggregations defined by quadratic forms. These results are helpful to address the ranking of

different mechanisms based on the favorableness of the distribution of types arises endogenously.

In addition to all the reviewed works that implicitly apply these results, there are two other

papers in the economics literature that have dealt, at least partially, with some of the technical

issues of this article. First, Caplin and Nalebuff (1991, §2) make use of a generalization of the

Brunn-Minkowski Theorem due to Prékopa (1971) and Borell (1975) to show that the integral of

any ρ-concave function, is ρ/(1+ρ)-concave, e.g., Avriel (1972). Since log-concavity corresponds to

the case ρ = 0, Caplin and Nalebuff (1991) generalize only the result of part (a) of Proposition 1 to

other functions that are not necessarily log-concave. Second, Bagnoli and Bergstrom (2005) make

use of Prékopa (1973) and Cauchy’s Mean Value Theorems to prove parts (a) to (c) of Proposition

1. Relative to this latter article, results of the present paper are not restricted to twice continuously

differentiable density functions defined on a bounded support. Actually, most results, except those

related to single-peakedness, also hold for non-continuously differentiable frequency functions that

fulfill the discrete version of total positivity.22 The present contribution goes beyond the scope of

any of these two papers in showing that log-concavity and therefore all its implied properties are

preserved under convolution, and not only through left-side integration.
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Pólya, G. and G. Szegö (1925): Aufgaben und Lehrsätze aus der Analysis, Vol. I. Berlin,
Germany: Springer.
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