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We present an econometrically feasible model that uses the information contained in
the innovation profile of each firm to test for the existence of complementarity among
production and innovation strategies. Our approach is able to distinguish between
complementarity and correlation induced by unobserved heterogeneity. We apply the
model to analyze the Spanish ceramic tiles industry where the adoption of the single
firing furnace in the 1980s facilitated the introduction of new product designs as well
as to opening new ways of organizing production. Our econometric results show that
there is significant complementarity between product and process innovation. Small
firms tend to be more innovative overall.

I. INTRODUCTION

It has long been recognized that modern firms develop several innovative strategies to ad-
just to the challenging new conditions of increasingly integrated markets. International
globalization of the economy and fast developments in telecommunications, computers,
and information technology have revolutionized the way firms are organized, and have
immensely increased firms ability to introduce new products, use new technologies, and
experiment with new designs and/or manufacturing procedures. An immediate question
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that arises, both in theory and empirically, is whether these two forms of innovation are in
some way related. If product and process innovation are complements these innovative
strategies are mutually reinforcing because increasing the level of any of them increases
the marginal profitability of the other, e.g., Milgrom and Roberts [1990]. Thus, for in-
stance, the design of public policies that give incentives to develop one strategy should
be aware of the “externalities” of such policies for other areas of decision of firms. Also,
as Milgrom and Roberts [1995] first noticed, the existence of complementarities requires
a high degree of coordination among firms’ activities and, thus, they favor hierarchical
organizational structures over flat ones.

Although the idea of complementarity is intuitively appealing, uncovering whether
such complementarity among strategies exists turns out to be a very difficult task. The
genuine difficulty arises because most of the time, testing for complementarity relies on
measuring correlations among error terms of equations representing the optimal decision
rules of firms. These simplified representation of the optimal decision rules may also
include the effect of misspecification and/or missing variables in addition to individual
unobserved heterogeneity of firms environments and organizational structure. As first
noticed by Athey and Stern [1998], the existence of firms unobserved heterogeneity may
be responsible for the correlation among strategies even though complementarity may
not exist at all. Therefore, this paper uses actual data from the Spanish ceramic tiles
industry to evaluate whether complementarities among innovation strategies exist while
at the same time controlling for the observed correlation among strategies that might only
be induced by firms’ unobserved heterogeneity.1

To consistently measure the complementarity among innovation strategies, we de-
velop and estimate a structural discrete choice model of production and innovation deci-
sions that is capable of distinguishing between complementarity and induced correlation
due to unobserved heterogeneity. Our estimation approach is based on the innovative
profile of firms, i.e., making use of the information revealed by the different combinations
of joint innovation decisions that firms may adopt. In this way, we can explicitly deal
with the existence of unobserved heterogeneity. This overcomes the criticism of Athey
and Stern [1998] to the overwhelming majority of models used to test for the existence of
complementarity.

The main contribution of this paper is to develop an econometrically feasible, discrete
choice, structural model of production and innovation decision that is able to identify the
source of the complementarity relations among strategies if they exist. Our model builds
partially on the approaches of Athey and Schmutzler [1995] and Athey and Stern [1998].
We focus on the existence of complementarity among scale, product, and process inno-
vation. We suggest a very simple model of firms’ production and innovation decision
making. Firms are assumed to maximize profits non-cooperatively but simultaneously
with respect to production and the innovative strategies that they want to pursue. We
only distinguish whether these innovation activities are either demand enhancing or cost
reducing. Within the framework of the present model, any general strategy aimed to
reduce the substitutability of firms’ product relative to the competitors’ should be con-
sidered a demand enhancing innovation. By reducing the degree of substitution between
the own’s and competitors’ products, the firm increases the potential mark-up that may
charge to its customers. Similarly, any strategy aimed to give the firm a competitive ad-
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vantage through unit cost reductions should be considered a cost reducing innovation.
In order to estimate this model and the implications of the complementarity hypothe-

sis, we use data from DIRNOVA, a database of Spanish firms, which includes information
on several innovation activities that they conduct. The information contained in this data
set allows us to distinguish between demand enhancing and cost reducing oriented inno-
vations, as well as to control for the effect of firms unobserved heterogeneity by means of
a structural discrete choice model of production and innovation decision.

Our estimates show that there is complementarity among strategies in the ceramic
tiles industry that we cover in this study. In general, we are able to document the ex-
istence of complementarity and we always reject model specifications that ignore these
complementary relationships, although we also document that some of the observed cor-
relation among strategies is just the result of unobserved heterogeneity. Our empirical
results are consistent with industry configurations where small and medium sized firms
have a comparative advantage in the adoption and employment of flexible manufactur-
ing methods. Typical Schumpeterian arguments relating increases in the scale with higher
probabilities of adopting or developing an innovation appear to fail because of the nature
of the innovations considered here, none of which requires a large scale of production to
be successfully implemented. This empirical evidence is also consistent with the view,
e.g., Milgrom and Roberts [1990], that the transition to flexible manufacturing methods
involves radical and coordinated changes of the firms activities.

In the ceramic tiles industry product and process innovations are complements while
smaller firms tend to engage more frequently in demand enhancing innovations. The
major innovation of this industry during the 1980s —the single firing furnace— allowed
reducing the minimum efficient scale of production of profitable plants. This technology
also allowed integrating product design more easily. However, taking advantage of such
design capabilities required an active entrepreneurial will. We interpret that the correla-
tion between product and process innovation explained by unobserved firm heterogene-
ity supports the idea that taking advantages of technology to introduce new products
mainly lays on elements such as the organization of production, access to distribution
channels, and/or background and experience of managers.

The paper is organized as follows. In Section 2 we describe the data and the features
of the Spanish ceramic tiles industry. We also report some preliminary evidence of corre-
lation among firms’ strategic decision variables. This description helps to fix some ideas
and support some of the assumptions of the simple model of monopolistic competition
that we develop in Section 3. This section also includes a discussion on the effect of deal-
ing with the two types of complementarities to specify an econometric model. Section 4
presents the estimates of the structural model of production and innovation decisions for
the Spanish ceramic tiles industry. Section 5 concludes. The Appendix includes a detailed
derivation of the likelihood function used to estimate the suggested structural model.

II. THE DATA

This section describes the data set used in this study and presents some preliminary evi-
dence in favor of the complementarity between product and process innovation, as well
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as pointing out the relation between innovative profile and size of the firms. In this sec-
tion we also present some measures of unconditional pairwise correlation between scale
of production, product, and process innovation, respectively.

II(i). The Spanish Ceramic Tiles Industry

The Spanish ceramic tiles industry is currently ranked second largest in the world, after
the Italian and ahead of the Brazilian industry. At the beginning of the eighties, Span-
ish ceramic tiles production suffered from technological backwardness as compared to
the Italian industry, and it could only compete in international markets targeting low
quality niches on a basis of labor intensive production techniques. But by mid eighties,
many firms had already adopted the single firing furnace. This was a major innovation.
Compared to the existing technology (product specific first firing furnace and full/half
cycle double firing furnace), it transformed the production of tiles in a much more en-
ergy efficient and automated process. Furthermore, this new technology also allowed the
production of high quality, low water absorption tiles of larger dimensions and different
shapes and colors. Design and application of computerization was easily embedded in
the production process, and an increasing variety of new high quality products flooded
the market afterwards.

There might be strong arguments in favor of the complementarity of product and
process innovation being in this case purely technical as the process innovation actually
allowed for new designs that were not possible with the previous technology. However,
new designs only became profitable as the domestic market matured. In addition, as
wages increased due to economic expansion, the adoption of the single firing furnace
became the optimal strategy for firms in this industry because they otherwise could not
compete even in the domestic market. Wage increases that accompanied the fast economic
growth in Spain during the second half of the 1980s acted as a trigger of a series of manu-
facturing changes that eventually led to a drastic transformation in the organization of the
ceramic tiles firms. The adoption of this process innovation eased the introduction of new
designs and thus increased the marginal profitability of carrying some sort of product in-
novation, which in turn also increased the marginal return of the investment in single
firing furnaces. As our results report, product and process innovation appear to go hand
in hand although technology alone does not explain such positive correlation between
innovative strategies. Unobserved factors, firm specific characteristics, possibly access to
distribution channels, and managerial ability may also explain such complementarity.

The ceramic tiles example is also illuminating in relation with the role of the scale of
production plays in the adoption of innovations. The single firing furnace was a major
labor saving innovation but required a complete restructuring of the production plant.
Furthermore, and contrary to the Schumpeterian rule, it reduced the minimum efficient
scale of production. Thus, firms who adopted the new furnace underwent a major trans-
formation that turned low levels of production profitable. Obviously, under these circum-
stances, using the scale of production as exogenous regressor will lead to simultaneity
bias in the estimation and most likely to inconsistent estimates in our nonlinear econo-
metric model. We therefore include the scale among the endogenous decisions variables
of our model.

– 4 –



II(ii). Scale and Innovative Behavior

Our econometric analysis uses data from DIRNOVA, a database of Spanish firms for
1988 and 1992. This database was collected by IMPIVA, a public agency in charge of
promoting international agreements on transfer of technology, commercial distribution,
joint-ventures, and subcontracting between Spanish and foreign firms. The DIRNOVA
database contains data built from information obtained through direct interviews with
managers of the companies applying a systematic methodology for its collection over the
years. Furthermore, it covers an interesting period of transformation of the Spanish econ-
omy after joining the European Union in 1986, and during a strong period of economic
growth that lasted until the end of 1992.

Table I presents the descriptive statistics for the ceramic tiles industry. For each firm
we know the output level (in logarithm), OUTPUT; whether firms engage in demand en-
hancing, or cost reducing innovation, PRODUCT and PROCESS, respectively; the percent-
age of the total production that is exported, EX; whether the European Union is the princi-
pal foreign market for foreign sales, EU; whether firms have at least one or two registered
trademarks, TM and TMHI, respectively; the number of years that the firm has been in
business (in logarithm), AGE; a dummy variable, MPROD, to indicate whether firms pro-
duce more than one product as defined at the 7-digits SIC level; and MPRODHI to indicate
whether firms produce at least three products at the 7-digit SIC level. In addition we
also include a TIME dummy for observations corresponding to year 1992 and define an
ENTRY dummy to indicate those firms who are only present at the 1992 sample and an
EXIT dummy to identify those firms that are only present in the 1986 sample. According
to Table I, the Spanish ceramic tile industry is characterized by middle sized firms, with
an average of about ten years of presence in the industry. About one third of these firms
engage in product and/or process innovation. Although nearly 80% of firms export, the
typical firm only sells abroad about one quarter of its production, being the European
Union the main destination of the ceramic tiles exports. Most firms only manufacture a
single product and most of them own registered trademarks to differentiate from com-
petitors.

=⇒ INSERT TABLE I ABOUT HERE ⇐=

We observe dummy indicators of the innovative strategies in which firms are engaged
in every period. The PRODUCT indicator takes value xd = 1, when firms acknowledge
that they participate in marketing and advertising projects, which is obviously related
to demand enhancing innovation activities. Similarly the PROCESS indicator takes value
xc = 1 whenever firms participate in the development of new manufacturing projects,
which is more related to cost reducing innovation strategies.2 Note that these innovation
indicators identify potentially reversible strategies, i.e., they do not necessarily represent
decisions on investments such as particular adoption of capital-embodied innovations.
Although it is expected that firms generally make use of these strategies during several
periods, it is possible that those innovation strategies may be discontinued later. The ad-
vantage of these indicators is that they are unequivocally related to the innovative profile
of firms and both belong to the last stages of the innovation management process.3
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Given our dichotomous indicators of innovation activities, four innovation profiles
are possible. Firms may specialize in either product or process innovation, as suggested
by Abernathy and Utterback [1978] or Kleeper [1996], they may either not innovate at all,
or more interestingly, if the innovate, they do so in both activities, more in accordance
with Milgrom and Roberts’ [1990] view of the modern manufacturing process. Table II
reports the proportion of firms that follows each combination of innovation strategies.
These results are also stratified by the scale of firms, xy, distinguishing whether they are
above or below the mean scale of each industry. For the whole sample, over 20% of firms
innovate simultaneously in product and process. Non-innovative firms amount to 50% of
the sample. The remaining 30% of firms either only carry out product or process innova-
tions. This pattern is also observed in the high and low scale samples, although smaller
firms appear to innovate slightly more frequently but they also adopt more often those in-
novation profiles comprised of only one practice. With respect to the scale of production,
firms engaged in both innovations are generally smaller than those not involved in inno-
vating at all. This difference in size is more pronounced in the low scale sample, while
in the high scale sample there are practically no differences of size between both groups
of firms. Interestingly, firms engaged in product innovation are smaller than those that
do not adopt this strategy —the mean scale is x̄y = 5.18 for those firms where xd = 1
and x̄y = 5.49 when xd = 0— but firms doing process innovation are slightly larger than
those that does not carry out this kind of innovation practices —x̄y = 5.41 when xc = 1
and x̄y = 5.37 when xc = 0.

=⇒ INSERT TABLE II ABOUT HERE ⇐=

II(iii). Unconditional Association

Association among strategies is the direct consequence of the supermodularity of the
profit function in the decision variables {xy, xd, xc}. Thus, the existence of complemen-
tarity relationships among strategies leads to pairwise monotone co-movements of the
endogenous variables.4

Are the apparent complementarity relationships shown in Table II significant? To an-
swer this question, Table III reports Kendall’s τ coefficients of association among decision
variables, i.e., production, product, and process innovation.5 We test the null hypothesis
of independence between pairs of decision variables. As in Table II, we compute these
association measures stratified by scale of the firms as well as for the whole sample. Re-
sults indicate that product and process innovation are positively associated regardless
of the scale of production of firms. As for the other relationships, product innovation
and scale of production are negatively associated in the case of small ceramic tiles firms,
while the association between process innovation and scale is more tenuous, appearing
to be positive in the case of large firms but negative in the case of small firms.

=⇒ INSERT TABLE III ABOUT HERE ⇐=

If ceramic tiles firms where identical beyond these three decision variables, we could
conclude that its profit function would be supermodular only in (xd, xc). However, this
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descriptive analysis does not condition on any observed or unobserved heterogeneity of
firms. Furthermore, pairwise association measures are far too weak a tool to distinguish
whether the observed association responds to the existence of complementarity or due to
the existence of unobserved heterogeneity. The following section presents an econometric
framework where such distinction is feasible.

III. PRODUCTION AND INNOVATION IN MODERN MANUFACTURING

In this section we present a highly stylized model of vertical and horizontal product dif-
ferentiation that allows us to study the relation between firms’ optimal production and
innovation decisions. We discuss in detail this econometrically feasible model that, most
importantly, distinguishes between complementarity and correlation induced by the ex-
istence of unobserved heterogeneity. This theoretical framework provides us with simple
testable hypothesis on the existence of complementarities among the firms’ decision vari-
ables.

In this section we first review the general theory of supermodular profit functions and
its relation to complementary strategies. We later present our econometric specification
of the profit function and finally discuss the estimation of such model.

III(i). Supermodularity and Complementarity

We contemplate a framework where firm i decides on the output level, xy i, and whether
to implement a demand enhancing or a cost reducing innovation, xd i and xc i respectively.
The vectorx i = (xy i, xd i, xc i)′ represents the decision variables of the firm. Obviously, the
characteristics of each firm and the market where it operates determine the relative prof-
itability of different production and innovation strategies. We distinguish among three
separate types of environmental parameters: revenue specific, Zr i, cost specific, Zc i, and
technology specific characteristics, Zk i. The economic environment of the firm is there-
fore represented by the vector Z i = (Z ′

r i,Z
′
c i,Z

′
k i)

′ of exogenous variables. Deciding
how these environmental variables affect each component of the profit function defines
a model of firm behavior. Our general model of production and innovation decision is
summarized by the following profit function:

(1) π(x i;Z i) = R(xd i, xy i;Zr i)− C(xc i, xy i;Zc i)− K(xd i, xc i;Zk i).

Model (1) is quite general and captures many of the features of a flexible manufac-
turing system. In addition to production, firms engage in process innovation in order to
improve their competitive position in their respective markets. The product-innovative
firm introduces new designs to differentiate from competitors. This demand enhancing
innovation xd shifts the firm’s residual demand, thus shifting the revenue function R(·)
up:

(2) R(1, xy i;Zr i) ≥ R(0, xy i;Zr i).

Similarly, the process-innovative firm obtains a competitive advantage by reducing its
total cost of production C(·) through the application of better technology and/or more
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efficient process management methods, xc:

(3) C(1, xy i;Zc i) ≤ C(0, xy i;Zc i).

Finally, both innovations are costly to implement, and thus, the induced increase in de-
mand or unit cost reduction has to compensate the adoption cost of innovations, K(·).

The maximization problem of any firm i consists in choosing the scale of production
xy i ∈ R, as well as whether to engage in product and process innovation, xd i ∈ {0, 1}
and xc i ∈ {0, 1}, respectively. While the first variable is continuous, the other two are
discrete, and thus, firms face a non-convex decision problem.

The discreteness of the decision variables requires at a theoretical level that we define
the set of control variables over a lattice. A lattice is defined by the set X and the partial
order ≥, where ∀x, x′ ∈ X, the set X also contains a smallest element under the order that
is larger than both x and x′, and a largest element that is smaller than both. If X = RN,
the join operator is defined as x∨ x′ = (min{x1, x′1}, min{x2, x′2}, . . . , min{xN, x′N}). Simi-
larly the meet operator is defined as x∧ x′ = (max{x1, x′1}, max{x2, x′2}, . . . , max{xN, x′N}).
Thus, the subset S ⊆ X is a sublattice if it is closed under under the join and meet opera-
tions.6

Therefore, we assume that X, the set of control variables, is a lattice, while Z, the set
of environmental variables, is a partially ordered set. Thus, π(x;Z) is supermodular in
X if ∀x,x′ ∈ X, and ∀Z ∈ Z, the following condition holds:

(4) π(x;Z) + π(x′;Z) ≤ π(x∨x′;Z) + π(x∧x′;Z).

Notice that the very same definition of supermodularity of the profit function embodies
the idea of complementarity among the decision variables, x. Increasing all decision vari-
ables separately does not increase profits in the same magnitude than increasing all of
them simultaneously. This can easily be proven by rewriting condition (4) as

(5) [π(x;Z)− π(x∨x′;Z)] + [π(x′;Z)− π(x∨x′;Z)] ≤ π(x∧x′;Z)− π(x∨x′;Z).

At first sight, it may appear that our model is focused on many non testable hy-
potheses. However, we are only restricting the pairwise interactions between production
and innovation strategies. For the profit function (1) to be supermodular in production
and innovation strategies, it is just needed that product innovation, xd i, shifts the firm’s
marginal revenue up, and that process innovation, xc i, shifts marginal production costs
down. Furthermore, complementarity between product and process innovation denotes
the existence of some scope economies in the adoption of such strategies. When synergies
are present, we should expect that choice variables move all together. Contemporaneous
complementarity will therefore induce positive pairwise correlation among strategies in a
cross-section sample. In the following section we specify an econometric model that can
accommodate these restricted pairwise movements of the decision variables to identify
the existence and magnitude of complementarities among the strategies of firms.

III(ii). Model Specification

At the empirical level, the dichotomous nature of some of the choice variables requires
that we set up a structural discrete choice model that predicts the proportions in which

– 8 –



different combinations of these discrete strategies appear in the sample. In order to do
so we assume a second order approximation to the component functions of firms’ profits.
This approximation is effectively quadratic in output but only includes innovation dum-
mies and their products. Thus, the revenue, production cost and adoption cost functions
of firm i can be written as:

R(xd i, xy i;Zr i) = αdxd i + αyxy i + δdyxd ixy i(6a)

+ θ′drzr ixd i + θ′yrzr ixy i +ψ′drζr ixd i +ψ′yrζr ixy i − (γr/2)x2
y i,

C(xc i, xy i;Zc i) = βcxc i + βyxy i − δcyxc ixy i(6b)

− θ′cczc ixc i − θ′yczc ixy i −ψ′ccζc ixc i −ψ′ycζc ixy i − (γc/2)x2
y i,

K(xd i, xc i;Zk i) = ηdxd i + ηcxc i − δdcxd ixc i(6c)

− θ′dkzk ixd i − θ′ckzk ixc i −ψ′dkζk ixd i −ψ′ckζk ixc i,

where vectors Zr i = (z′r i, ζ
′
r i)

′, Zc i = (z′c i, ζ
′
c i)

′, and Zk i = (z′k i, ζ
′
k i)

′ comprise all envi-
ronmental variables of firms. Among those variables, zr i, zc i, and zk i are observed by the
econometrician but ζr i, ζc i, and ζk i are not. This latter set of variables represents the unob-
served heterogeneity of firms. Notice that both, observed and unobserved heterogeneity
affect the marginal return of the different choices. Therefore, a conditional association
analysis similar to that of Table III but controlling for the effect of observable character-
istics does not suffice to conclude whether firms’ strategies are truly complements, or on
the contrary the observed association is only induced by the unobserved heterogeneity of
firms.7 After substituting (6a)–(6c) into (1), the profit function becomes:

π(xd i, xc i, xy i) = (θd0 + θ′drzr i + θ′dkzk i +ψ′drζr i +ψ′dkζk i)xd i(7)

+ (θc0 + θ′cczc i + θ′ckzk i +ψ′ccζc i +ψ′ckζk i)xc i

+ (θy0 + θ′yrzr i + θ′yczc i +ψ′yrζr i +ψ′ycζc i)xy i

+ δdyxd ixy i + δdcxd ixc i + δcyxc ixy i − (γ/2)x2
y i,

where θd0 = αd − ηd, θc0 = −βc − ηk, θy0 = αy − ηy, and γ = γr − γc. The profit function
is concave in the scale of production whenever γ > 0. This parameter is however not
identifiable with the current data because we do not observe the level of profits associated
to each scale of production and innovation profile of firms. Our estimation procedure,
described below, is based only on the information revealed by the optimal decisions of
the firm. So, we have no means to identify γ as a consequence of the invariance of the
set of maximizers under monotone transformations of the profit function. We therefore
normalize γ = 1 and implicitly assume that the profit function is well behaved. Next,
distinguishing (and grouping) the elements of observed and unobserved heterogeneity
of firms environment we can rewrite profit function (7) as:

π(xd i, xc i, xy i) = (θd i + εd i)xd i + (θc i + εc i)xc i + (θy i + εy i)xy i(8)

+ δdcxd ixc i + δdyxd ixy i + δcyxc ixy i − x2
y i/2.

Comparing equations (7) and (8) and equating coefficients, we realize that functions θ′s
and ε′s summarize the effect of observable and unobservable firm heterogeneity as rep-
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resented by the following linear transformations:

θd i = θd(zr i, zk i) = θd0 + θ′drzr i + θ′dkzk i,(9a)

θc i = θc(zc i, zk i) = θc0 + θ′cczc i + θ′ckzk i,(9b)

θy i = θy(zr i, zc i) = θy0 + θ′yrzr i + θ′yczc i,(9c)

εd i = ψ′drζr i +ψ′dkζk i,(9d)

εc i = ψ′ccζc i +ψ′ckζk i,(9e)

εy i = ψ′yrζr i +ψ′ycζc i.(9f)

In order to estimate the parameters of (8) by the maximum-likelihood method, we need
to specify a known family of distributions from which particular realizations of unob-
servables ε i = (εd i, εc i, εy i)′ are drawn. We assume that ε i follows a trivariate normal
distribution with zero mean, standard deviations denoted as (σd, σc, σy), and correlation
matrix given by:

(10) R =

 1 ρdc ρdy
ρdc 1 ρcy
ρdy ρcy 1

 .

Several comments are worth being pointed here. First, equation (8) shows the differ-
ent strategy-related sources that contribute to the profits of firm i. The first term in the
right hand side of equation (8) captures the direct profitability of adopting the demand-
enhancing innovation. This direct return is divided into two components: θd i, which is
related to the observable characteristics of the firm zr i and zk i, as shown in equation (9a),
and εd i, which comprises organizational, managerial, or simply non-observed environ-
mental factors that also affect the profitability of product innovation. In a similar manner,
the following two terms represent the direct return of process innovation, (θc i + εc i),
and, apart of a second order term, the marginal profitability of the scale of production,
(θy i + εy i). In addition to these direct returns, the magnitude of complementarities among
strategies, identified by parameters δdc, δdy, and δcy, also affect profits. The last term of
equation (8) captures the curvature of the profit function with respect to xy i.

Second, supermodularity in the decision variables of profit function (8) depends solely
on the signs of parameters δdc, δdy, and δcy. For example, (8) is supermodular in (xy i, xd i,
xc i) as long as δdy > 0, δdc > 0, and δcy > 0. Thus, as discussed above, δdy > 0 implies that
the adoption of a product innovation increases marginal returns and, therefore, favors the
simultaneous expansion of the scale of production. Alternatively, δdy > 0 also means that
higher levels of production increase the total profitability of adopting demand-enhancing
innovations. Similarly, δcy > 0 indicates that process innovation shifts the marginal costs
of production down, so carrying out this kind of innovation leads to higher levels of
production. Finally, δdc > 0 indicates that the adoption of one of the innovation practices
reduces the cost of adopting the other innovation strategy.

Third, equation (8) also points out other sources of association among decision vari-
ables beyond complementarity. For example, a positive association between product in-
novation and scale of production could be due to a variation in one of the elements of zr i
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that simultaneously increases the direct returns to xd i, through the θd i function of equa-
tion (9a), and the marginal returns to xy i, through θy i, see (9c). In a similar fashion, the un-
observed heterogeneity captured by the variables in ε i could also lead to co-movements
of the elements of x i. If, for example, there is a positive correlation between εd i y εc i, i.e.,
ρdc > 0, then a simultaneous increase in both εd i and εc i rises the returns to both innova-
tion activities. Therefore, the effect of association of strategies due to firms’ unobserved
heterogeneity is captured by parameters ρdy, ρcy, and ρdc. Notice that, as could be seen
in equations (9d)–(9f), the unobservables εd i, εc i, and εc i share common determinants, so
we should not neglect in advance the possibility of correlation induced by unobserved
organizational and/or managerial factors.

Fourth, observe that θd i depends on revenue shifting and cost of adoption environ-
mental variables, i.e., zr i and zk i, respectively. However, it does not depend on cost of
production variables, zc i. A similar analysis for θc i and θy i also reveals that these exclu-
sion restrictions on the elements of z i = (z′r i, z

′
c i, z

′
k i)

′ clearly identify shifts of different
elements of the profit function and allow us to identify whether profit movements are
originated by variations of the returns to product innovation, process innovation, or scale
of production.

The model is therefore very flexible and it may accommodate three sources of associa-
tion among decision variables: complementarities, measured by δdc, δdy, and δcy; common
impacts on returns to strategies originated by observable features of the production pro-
cess that we can control, at least partially, through the observable environmental variables
z i; and correlation induced by unobserved factors that also affects the returns to different
firms’ activities.

III(iii). Estimation Approach

Ideally, we would like to observe the strategies used by each firm as well as a measure
of their combined profitability. Unfortunately, we do not observe the revenue and cost
functions of each firm. Thus, many of the parameters of equation (7) cannot be identified.
Still, from the observed decisions on scale of production and innovation we can recover
enough parameters —those of equation (8)— to consistently test for complementarity and
identify whether the association among strategies is due to the existence of complemen-
tarity or if it only amounts to correlation induced by the unobserved heterogeneity of
firms.

In the absence of profit data, we should base our inference in the set of optimality
conditions that determine the simultaneous choice of strategies that characterize each
innovation profile. First, we simplify the objective function by substituting the optimal
value of the continuous scale variable, through the corresponding optimality condition.
From the first order condition of maximizing (8) with respect to xy i we obtain the optimal
scale choice as a function of the innovation strategies xd i and xc i:

(11) xy i = θy i + δdyxd i + δcyxc i + εy i.

After substituting this expression into the profit function (8), the profits can now be writ-
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ten as an exclusive function of the discrete innovation strategies:

(12)
π(xd i, xc i) = (θd i + εd i)xd i + (θc i + εc i)xc i + δdcxd ixc i

+
1
2
(θy i + εy i + δdyxd i + δcyxc i)2.

Next, it is convenient to define the following magnitudes:

κy i = θy i + εy i,(13a)

κd i = θd i + δ2
dy/2 + δdyκy i,(13b)

κc i = θc i + δ2
cy/2 + δcyκy i,(13c)

π0 i = κ2
y i/2,(13d)

δ = δdc + δdyδcy,(13e)

so that we can write the profits function (12) as follows:

(14) π(xd i, xc i) = (κd i + εd i)xd i + (κc i + εc i)xc i + δxd ixc i + π0 i.

Profits from different innovation profiles are divided into π0 i, the profits from not inno-
vating at all; the direct returns of product innovation, whether observable, κd i, or un-
observable, εd i; the direct returns of process innovation, again distinguishing between
observable, κc i, or unobservable, εc i; and δ, which measures the complementarity be-
tween innovation strategies. Notice that the observable returns, κd i, κc i, and δ, already
include the interaction among the innovation strategies and the optimal scale, as depicted
in equations (13a)–(13e).

A profit maximizing firm chooses the combination of innovation strategies that leads
to higher profits. For instance, a firm engages in simultaneous product and process inno-
vation if the following three conditions are fulfilled:

π(1, 1) > π(0, 1) =⇒ κd i + εd i + κc i + εc i + δ + π0 i > κc i + εc i + π0 i,(15a)
π(1, 1) > π(1, 0) =⇒ κd i + εd i + κc i + εc i + δ + π0 i > κd i + εd i + π0 i,(15b)
π(1, 1) > π(0, 0) =⇒ κd i + εd i + κc i + εc i + δ + π0 i > π0 i.(15c)

For convenience, we denote as Si(1, 1) the subset of realization of errors (εd i, εc i) leading
firm i to jointly adopt innovation strategies xd i = 1 and xc i = 1. After simplifying (15a)–
(15c), Si(1, 1) comprises all values of (εd i, εc i) that simultaneously fulfill the following
three conditions:

εd i > −κd i − δ(16a)
εc i > −κc i − δ(16b)

εc i + εd i > −κd i − κc i − δ(16c)

It is straightforward to show that the third condition is not binding when δ ≤ 0. Similar
conditions for every strategy profile are presented in Table IV, which implicitly define
Si(xd i, xc i) for all possible values of xd i and xc i.
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=⇒ INSERT TABLE IV ABOUT HERE ⇐=

Figure 1a and Figure 1b show the support of εd i and εc i for a given realization of εy i,
and, by means of the sets Si(xd i, xc i) of Table IV, the optimal choices of innovative pro-
file induced by every combination of unobservables (εd i, εc i). Two comments are worth
being pointed out here. Observe that, unlike more standard econometric models such as
the bivariate probit, the Si(xd i, xc i) sets are not in general (displaced) quadrants and the
sign of δ determines the shapes of these sets. Only when δ = 0 all four sets Si(xd i, xc i)
have the simple form of quadrants. We have therefore to control for this latter feature of
the problem when computing the likelihood function of each observation.

=⇒ INSERT FIGURE 1 ABOUT HERE ⇐=

Therefore, our model is characterized by a linear equation for the continuous variable
xy i and a set of inequalities from which we can infer bounds for εd i and εc i from any
given observed choice on xd i and xc i. With this information in hand, we can write the
contribution to the likelihood function of the scale-innovation profile of firm i as:

(17) Li(xd i, xc i, xy i) = f (εy i) Pr(xd i, xc i|εy i).

where f (·) is the probability density function of εy i. Thus, analogously to other econo-
metric models like the family of generalized tobit models —see for instance Amemiya
[1985]—, the probabilistic structure of our model mixes a continuous density with a dis-
crete probability. This latter probability is evaluated by integrating g(·), the joint density
of εd i and εc i conditional on εy i, over the corresponding Si(xd i, xc i) region. Thus:

(18) Li(xd i, xc i, xy i) = f (εy i)
∫∫

Si(xd i,xc i)
g(εd i, εc i|εy i)dεc idεd i.

The results of this section together with a convenient distributional assumption on the
elements of ε i enables us to perform the estimation of parameters of interest based on the
likelihood function sketched in (18). The Appendix A presents a detailed derivation of
the likelihood function under the assumption of normally distributed ε i.

IV. COMPLEMENTARITIES IN THE SPANISH CERAMIC TILES INDUSTRY

The parameters that capture complementarity, δdc, δdy, and δcy are identified through the
cross products of the decision variables on the profit function (8). As for the parameters of
correlation induced by unobserved heterogeneity of (9d)–(9f) that capture organizational
features, managerial ability, and/or other issues not known to the econometrician, we
can only determine the most likely joint distribution of such effects. So, in addition to the
parameters of profits function, we have to estimate the parameters of a general normal
distribution of ε = (εd i, εc i, εy i)′. These parameters includes the correlation coefficients
ρdc, ρdy, and ρcy and the standard deviation of εy i, denoted as σy.8

The remaining basic elements of our model are given by the observable environmental
variables of equations (9a)–(9c). Functions θd(zr i, zk i), θc(zc i, zk i), and θy(zr i, zc i) include
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the combined effects of the environmental variables that affect revenues, zr i; cost of pro-
duction, zc i; and cost of adoption zk i. Which variables are included in each one of these
categories is defined by our behavioral model of production and innovation. Our selec-
tion of variables is not unlimited and the following paragraphs describe what we think is
a reasonable behavioral model for the Spanish ceramic tiles industry.9

There is first a set of common variables affecting revenues, costs of production, and
costs of adoption. Besides a CONSTANT capturing the average level of revenues, produc-
tion costs, and adoption costs, we allow for a TIME effect over the three environmental
functions. The time dummy may capture dynamic effects on demand, as new products
gain access to new distribution channels, firms build up their reputation, or consumers
learn about the new varieties of ceramic tiles and their improved quality. Similarly, as
time goes by, firms may be able to reduce their unit costs as they gain experience in using
the new technology, or because of a downwards trend in the costs of inputs. It is expected
that the cost of adoption also becomes less important with time due to reduction in the
actual cost of the single firing furnace, as well as for the improved local knowledge of
technicians and engineers (the ceramic tiles industry is clustered in a small region on the
east coast of Spain).

We also include among the common variables two dummies to control for ENTRY into
or EXIT of firms from the sample. These variables may capture the differentiated environ-
ment and behavior of recent startups and of declining firms. Overall, the Spanish ceramic
tiles is not a declining industry, which helps us avoid dealing with endogenous exit of
firms.

Among the environmental variables affecting exclusively to revenues we include EX,
the percent of production that is exported; whether the largest foreign market was the
European Union, EU; and wether the firm owns at least one registered trademark, TM.10

Most ceramic tiles firms concentrate their sales in the domestic market. The European
market provides with higher revenues, but also demands, in general, higher quality prod-
ucts. Those Spanish ceramic tiles firms who are present in Europe are also among the
largest, and more innovative, and we expect that all these effects affect positively to their
revenues. Trademarks are the common way to identify a producer with the quality of
their products. We interpret this indicator as the valuation of goodwill and reputation,
and again, we expect it to be associated to positive revenue shifts.

The only variable associated exclusively to the cost of production is AGE. This variable
captures the potential learning by doing effects of experience. The number of years that a
firm has been active in the industry works as a signal related to the accumulated output
that will eventually be responsible of potential unit cost reductions.

Finally, the number of varieties produced by the firms may affect the costs of adopt-
ing innovations. Its effect is however ambiguous. The dummy MPROD identifies those
firms that produce more than one product (about 39% of the sample).11 Costs of adopt-
ing a new innovation might presumably be higher if they have to be integrated with
the joint production of several products. Coordination and organizational problems may
then arise. On the contrary, by simplifying matters, or by reducing the fixed costs com-
mon to the different production lines, multiproduct firms may enjoy a significant cost
savings if adopting both product and process innovations.

Table V reports the maximum likelihood estimates of our model. The revenue, pro-
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duction costs, and adoption cost specific argument enter the return functions θd(zr i, zk i),
θc(zc i, zk i), and θy(zr i, zc i) as indicated in equations (9a)–(9c). Therefore, and according
to (8) the estimates of the observable environmental variables have to be interpreted as
increasing o reducing the direct returns to engaging in product innovation, process inno-
vation, and setting the scale of production.

=⇒ INSERT TABLE V ABOUT HERE ⇐=

Table V presents four different specifications of the model of production decision and
adoption of innovations. Model [I], which is primarily intended for testing purposes,
assumes that there is no complementarity at all. Model [II] considers that any correla-
tion among strategies has its sole origin on organizational features or other unobserved
characteristics of firms. This is the type of model commonly estimated —e.g., Arora and
Gambardella [1990], Mohnen and Röller [2003], Kaiser [2003], Cassiman and Veugelers
[2002]— where the choice of innovation strategies is studied in isolation of each other but
complementarity is studied by analyzing the correlation across error terms of each choice
equation. Model [III], on the contrary, assumes that there is no unobserved firm hetero-
geneity, and consequently, all correlation will be explained by the existing complementar-
ity among strategies. Finally, model [IV] is the general model discussed in the previous
section and it allows for both complementarity and correlation induced by unobserved
heterogeneity.

At this time, it is worth turning our attention to the likelihood ratio tests presented in
Table VI. Regardless of the alternative hypothesis considered, Model [I] is always rejected
in favor of any other model that allows for the possibility of complementarity of any kind.
So, complementarity among strategies is a relevant issue in our data set. Last line of Ta-
ble VI reports a Vuong [1989] test of non-nested hypotheses to compare models [II] and
[III].12 This test reveals that these two models give essentially equivalent explanations of
firms behaviour in our sample, so we cannot distinguish between models that attribute
the association of strategies to a single source. However, model [IV], which includes dif-
ferent both complementarity and unobserved heterogeneity, is always preferred (at a 10%
significance level) to models [II] or [III]. We will therefore focus our comments in the most
general specification of our production and innovation model.

=⇒ INSERT TABLE VI ABOUT HERE ⇐=

It is worth making a couple of general remarks at this point. First, in addition to
allowing for different sources to explain the association of strategies, we condition the
empirical analysis of the different innovation profiles to a set of observable characteristics
of firms. The last row of Table V reports a Wald test of joint significance of all these
characteristics of firms. The alternative model would only include constants θd, θc, and
θy. Such a model is always rejected. Returns to innovation and production decisions
vary across firms, and the estimation improves substantially if we control for observable
characteristics of firms.

The second remark is referred to the precision of the estimates. Model [IV] is less pre-
cise than any of the other models and this is due to the difficulty to distinguish the source
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of association among strategies. Some parameters are only significant under restrictive
relationships. However, in the presence of both complementarity and induced correlation
due to unobserved heterogeneity, the estimates of environmental variables are no longer
consistent in models [I]–[III].

We first turn our attention to the determinants of the returns of product innovation.
Trademarks have a quite significant effect on the return of product innovation, θd. This
result is intuitive as trademarks ease the way for firms to appropriate the profits of their
innovations. We also document that the effect of trademarks on the return of product
innovation increases more than proportionally with the number of registered trademarks.
Similarly, returns to demand innovation are higher when firms offer many products. This
can be the result of reputation or consumer learning spillovers across different products
of a firm. An increase in the quality of one of the products of a firm may lead consumers
to purchase some of the other varieties offered by the firm. Only firms that exit the market
have a significantly lower return to engage in demand enhancing innovations.

Only two variables among our regressors appear to have significant effects on the
returns to adopt process innovations. The older firms get, the less likely they innovate in
cost reducing innovations. The single firing furnace of the ceramic tile industry represents
a major innovation that requires the production plant to be completely redesigned. It is
in many cases more efficient to build a brand new plant than have an old one remodelled.
Thus, firms that entered during the early 1980s were more likely to have adopted such
major innovation by the end of the decade. Process innovation is also more profitable
for multiproduct firms. This together with the high return of product innovation for
multiproduct firms is consistent with the existence of economies of scope in the ceramic
tile industry.

Firms with access to foreign markets increase significantly the returns to a larger scale
of production. This is also the case of firms with several registered trademarks. As firms
can appropriate the benefits of their innovations, they take advantage by expanding pro-
duction. The profitability of large production also increases with time, as firms get estab-
lished, and only decline before firms leave the market.

Perhaps the most interesting results are those involving the association of strategies.
We should notice that when we restrict the model to include exclusively either comple-
mentarity or correlation induced by unobserved heterogeneity, the estimates wrongly
pick the effect of the excluded source of association. This can be seen comparing the
estimates of δdc, δdy, δcy, and those of ρdc, ρdy, ρcy across models [II], [III], and [IV]. This
latter specification reveals, for instance, that the association of product and process inno-
vation already documented in Table III has its origin on unobserved firm heterogeneity.
This is consistent with simultaneous innovation in product and process being the result
of organizational features of the firm difficult to account for, such as the experience, back-
ground, and ability of managers that may realize of the high profitability of developing a
combined set of strategies simultaneously.

Smaller firms obtain a larger return of adopting product innovations. This is mostly
a technological relationship. The single firing furnace reduced effectively the minimum
efficient scale of ceramic tiles firms, thus allowing that smaller firms engaged in design
of new products. When comparing models [II] and [IV] we observe that the inconsistent
estimate of a negative correlation induced by unobserved heterogeneity in model [II] is
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only due to the fact that we are excluding the possibility of complementarities.
In models [II] and [III], scale and process do not appear to be related at all. This is

again the result of a misspecified model based on a restricted structure of association of
strategies. In model [IV], scale and process innovation show significant association of
opposite sign depending of their nature. Returns to innovation are higher for larger firms
based on technological features of the production process, i.e., complementarity. Larger
firms may benefit the most from employing the new single firing furnace and using all
the increased capacity of production that such innovation brings to the firm. The negative
effect of the correlation induced by unobserved heterogeneity could perhaps be explained
by the lack of technical personnel, access to markets, and manager backgrounds of small
firms, which deters them (actually most of the firms in the sample) to adopt the single
firing furnace even though it is designed to achieve its minimum efficient scale at a low
level of production.

To conclude, the estimation shows a rich pattern of association among strategies dis-
tinguishing by their nature and origin. These estimates conform the well established facts
of the Spanish ceramic tile industry and point out the potential importance of organiza-
tional issues in the delay of adopting innovations. Among the policy recommendations
we can think of management training, fostering of mergers and consolidation of the in-
dustry, and/or the development of specialized technological institutes are potentially ef-
fective ways to help spreading knowledge about the new technologies and thus prompt
more firms to adopt this major innovation so that they can compete successfully in inter-
national markets where the return of the investment appears to be higher. Technological
institutes and research centers sponsored by ceramic tiles firms or local governments were
actually developed during the 1990s to pool resources across firms in the development of
new materials.

V. CONCLUDING REMARKS

This paper has introduced and estimated an econometric model that can distinguish be-
tween complementarity and induced correlation due to unobserved heterogeneity as al-
ternative explanation of the observed association among the different strategies of a firm.
Our estimates of the Spanish ceramic tiles industry show that an econometric model that
allows for complementarities among production, product, and process innovation is al-
ways preferred to one where firms strategies are independent and all heterogeneity as-
sumed to be known to the econometrician.

Our results show that there is significant association between product and process
innovation, and that it is mostly due to unobserved heterogeneity. This opens the door to
interpretations where the organizational form of firms and/or the experience and ability
of managers become the key element to coordinate and take advantage of the innovation
possibilities offered by technology. Smaller firms appear to be more inclined to innovate.
This is the result of technology in the case of demand innovations (complementarity) but
of organizational matters (correlation induced by unobserved heterogeneity) are more
important in the case of process innovation.

Our model is a first step in the direction of evaluating the importance and origin of
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innovation complementarities. We envision at least two ways in which the present frame-
work could be extended. First, we could add a temporal dimension to the analysis of
complementarities. A panel data of this model will be able to identify the existence of dy-
namic complementarities through the identification of state dependence of the sequence
of realized types of innovations. Second, we could consider contemplating several ad-
ditional strategies. If these additional strategies were continuous, the extension of the
model would be straightforward. If, alternatively, we considered dichotomous strategies,
the definition of Si(xd i, xc i), the regions of realizations of shocks associated to each inno-
vation profile becomes much harder to delimit and we will have to resort to simulator
estimators such as those of McFadden [1989] and Pakes and Pollard [1989].

A. APPENDIX

To distinguish the source and nature of complementarity relations, we estimate the model
by maximum likelihood. The following pages describe the derivation of the likelihood
function in detail. We assume that the vector of disturbances ε i = (εd i, εc i, εy i)′ is nor-
mally distributed with zero mean, variances denoted by (σ2

d , σ2
c , σ2

y )′ and correlation ma-
trix as given in equation (10). In addition, we assume that environmental variables zr i,
zc i, and zk i are orthogonal to the different components of ε i. Then, the contribution of
each observation (xd i, xc i, xy i) to the likelihood function (18) can be written as:

(A.1) Li(xd i, xc i, xy i) =
∫∫

Si(xd i,xc i)
σ−1

y φ3(µd i, µc i, µy i;R)dεc idεd i,

where φ3(·;R) is a standard trivariate normal density function with correlation matrixR,
and:

µd i = εd i/σd,(A.2)
µc i = εc i/σc,(A.3)
µy i = εy i/σy = (xy i − θy i − δdyxd i − δcyxc i)/σy,(A.4)

are the standardized error terms of the model.
We first define a couple of variables to ease rewriting the relationships described in

Table IV in a more convenient manner for our analysis:

(A.5) qj i = 2(xj i − 1), (j = d, c),

that takes value 1 when xj i = 1 and −1 whenever innovation strategy j is not adopted.
We then define the following indicators:

si = qd iqc i,(A.6)
mi = (si + 1)/2.(A.7)

Therefore, si (mi) takes value−1 (1) when only one of the innovation strategies is adopted
and value 1 (0) otherwise, i.e., when either both innovations are adopted, or when both
innovations are not adopted simultaneously. We can then define Si(xd i, xc i), the set of
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realizations (εd i, εc i) leading to the observed choices of xd i and xc i, from the following
inequalities:

qd iεd i > −qd i(κd i + δxc i),(A.8)
qc iεc i > −qc i(κc i + δxd i),(A.9)

and if: siδ > 0,

qc iεc i > −qc i(κc i + miδ + siκd i + siεd i).(A.10)

Computation of the likelihood function gets complicated by the fact that when siδ > 0,
the integration areas are not rectangular any more. To illustrate this issue, let analyze the
contribution to the likelihood of an observation where a firm innovate both in product
and process: xd i = 1, xc i = 1. According to (A.6), si = 1 in this case, so the sign of
siδ is the same as the sign of δ. If δ < 0 the integration is defined on the rectangular
region Si(1, 1) = [−κd i − δ, ∞)× [−κc i − δ, ∞), shown in the upper right area of Figure 1b.
On the contrary, if δ > 0 the integration region for joint adoption of innovations is not
rectangular. Figure 1a shows that Si(1, 1) is a subset of [−κd i − δ, ∞)× [−κc i − δ, ∞) when
δsi > 0. Therefore, making use of the rules that define the sets Si(xd i, xc i), (A.8)–(A.10),
we can write (A.1) as:

(A.11) Li(xd i, xc i, xy i) =
∫ ∞

kd i

∫ ∞

kc i

σ−1
y φ3(µd i, µc i, µy i;R∗)dµc idµd i

− 1(siδ > 0)qd i

∫ bd i

ad i

∫ bc i

ac i

σ−1
y φ3(µd i, µc i, µy i;R)dµc idµd i,

whereR is the correlation matrix of ε i andR∗ is the correlation matrix of (qd iεd i, qc iεc i, εy i),
that is:

(A.12) R∗ =

 1 siρdc qd iρdy
siρdc 1 qc iρcy

qd iρdy qc iρcyρdc 1


and 1(·) is the indicator function that takes value 1 when its argument is true and 0 oth-
erwise. Finally, the limits of integration of (A.11) are:

kd i = −qd i(κd i + δxc i)/σd, kc i = −qc i(κc i + δxd i)/σc,(A.13)
ad i = −(κd i + δ)/σd, bd i = −κd i/σd,(A.14)
ac i = −(κc i + δxd i)/σc, bc i = −(κc i + miδ + siκd i + siσdµd i)/σc.(A.15)

The first integral (A.11) contains the mass of probability associated to the rectangular
regions of the error space defined by equations (A.8) and (A.9). When siδ > 0 and
Si(xd i, xc i) are not rectangular, this integral overestimates Li. The second integral of (A.11)
corrects this bias.
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The first integral of (A.11) can be written, after conditioning on µy i, as a function of
a single dimensional normal probability density function, φ(·), and a bivariate normal
probability distribution function, Φ2(·; ρ), as follows:

(A.16)
∫ ∞

kd i

∫ ∞

kc i

σ−1
y φ3(µd i, µc i, µy i;R∗)dµc idµd i = σ−1

y φ(µy i)Φ2(−kd.y i,−kc.y i; siρdc.y),

where:

k j.y i =
k j i − qj iρjyµy i

(1− ρ2
jy)

1/2
, (j = d, c),(A.17)

and

ρdc.y =
ρdc − ρdyρcy[

(1− ρ2
dy)(1− ρ2

cy)
]1/2 .(A.18)

We proceed similarly to evaluate the second integral of (A.11). Conditioning on µy i,
we get:

(A.19)
∫ bd i

ad i

∫ bc i

ac i

σ−1
y φ3(µd i, µc i, µy i;R)dµc idµd i =

σ−1
y φ(µy i)

∫ bd.y i

ad.y i

∫ bc.y i

ac.y i

φ2
(
µd.y i, µc.y i; ρdc.y

)
dµc.y idµd.y i,

where:

aj.y i =
aj i − ρjyµy i

(1− ρ2
jy)

1/2
, bj.y i =

bj i − ρjyµy i

(1− ρ2
jy)

1/2
, (j = d, c).(A.20)

Next, conditioning µc.y i on µd.y i, we can write (A.19) as:

(A.21)
∫ bd i

ad i

∫ bc i

ac i

σ−1
y φ3(µd i, µc i, µy i;R)dµc idµd i =

σ−1
y φ(µy i)

∫ bd.y i

ad.y i

φ
(
µd.y i

) ∫ bc.dy i

ac.dy i

φ
(
µc.dy i

)
dµc.dy idµd.y i,

where:

ac.dy i =
ac.y i − ρdc.yµd.y i

(1− ρ2
dc.y)

1/2
, bc.dy i =

bc.y i − ρdc.yµd.y i

(1− ρ2
dc.y)

1/2
.(A.22)

Integrating now (A.21) with respect to µc.dy i:

(A.23)
∫ bd i

ad i

∫ bc i

ac i

σ−1
y φ3(µd i, µc i, µy i;R)dµc idµd i =

σ−1
y φ(µy i)

∫ bd.y i

ad.y i

φ
(
µd.y i

)[
Φ(bc.dy i)−Φ(ac.dy i)

]
dµd.y i.
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Finally, substituting (A.16) and (A.23) in (A.11), we get:

(A.24) L(xd i, xc i, xy i) = σ−1
y φ(µy i)

{
Φ2(−kd.y i,−kc.y i; siρdc.y)

− 1(siδ > 0)qd i

∫ bd.y i

ad.y i

φ
(
µd.y i

)[
Φ(bc.dy i)−Φ(ac.dy i)

]
dµd.y i

}
.

The only remaining difficulty in the evaluation of the likelihood function is the com-
putation of the integral shown in the second line of (A.24). Changing variables so that
τi = 2(µd.y i − ad.y i)/(bd.y i − ad.y i) − 1, this integral can fortunately be easily evaluated
by means of a Gauss-Legendre quadrature (see Stroud and Secrest [1966] for instance).
The results of this paper were obtained using a 40 points rule to evaluate the likelihood
functions. All computations were carried out with Ox 3.30, Doornik [2002].

A special case of our model occurs when δdc, δdy and δcy equal zero. In the absence of
complementarity, our model simplifies to a single linear equation and a couple of probits.
However, in this case, standard deviations σd and σc are not identified. To avoid problems
of local identification we normalize σd = 1 and σc = 1, as it is commonly made for the
estimation of probit models.
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NOTES

1. Our econometric approach also incorporates many contributions of the growing empir-

ical literature on complementarities of innovations. The works of Arora and Gambardella

[1990] and Ichniowski, Shaw and Prennushi [1997] are two good examples of the existing

attempts to test the implications of the complementarity hypothesis, although controlling

only for observable firm’s differences.

2. Other available indicators of process innovation are the license and assistance in pro-

duction, acquisition and/or transfer of technology, and staff training programs. The other

product innovation indicator available is the expansion of the commercial structure. We

have estimated the model using different combinations of these product and process in-

novation indicators, but results regarding complementarities are robust to using different

definitions of product and process innovation.

3. An alternative valid interpretation of our results would be to analyze complementar-

ities between marketing and manufacturing strategies, but we prefer the more general

setup of Section 3 where marketing and manufacturing strategies are considered indica-

tors closely correlated to demand enhancing and cost reducing strategies as defined in

equations (2) and (3) below.

4. The theoretical foundations of this comparative static result is shown to hold by Hölm-

strom and Milgrom [1994], but was earlier implemented empirically by Arora and Gam-

bardella [1990].

5. We also computed Pearson’s linear correlation coefficient, r, and Spearman’s rank-

order correlation coefficient rs, which lead to the same qualitative results. However

Pearson’s r is not adequate to measure possibly nonlinear association between two vari-

ables. Nonparametric correlation is more robust than linear correlation to the existence

of outliers. Spearman’s rs and Kendall’s τ are invariant to monotone transformations of

variables. However, Kendall’s τ is more nonparametric and generally preferred to Spear-
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man’s rs because it uses only the relative ordering of ranks instead of their numerical

difference. See Press, Flannery, Teulosky and Vetterling [1986, §14.5–14.6] for the compu-

tation of Kendall’s τ and its asymptotic distribution.

6. For an extensive introduction to lattices and set defined functions see Topkis [1998].

7. This is the main point of the work by Athey and Stern [1998].

8. In practice we normalize the standard deviations of εd i and εc i as σd = σc = 1. The

reason why we have to assume that the marginal distribution of those errors have the

same dispersion has to do with local identification problems. Whenever δ = 0 our model

reduces to the estimation of a linear equation plus a bivariate probit. In such a case nei-

ther of the two standard deviations of the errors are identified. In principle, whenever

δ 6= 0, one of the two standard deviations could be identified. However, we cannot rule

out ex ante the possibility that δ = 0 and we encountered severe difficulties to achieve

convergence as soon as our iterations took us in the surrounding of δ = 0.

9. Actually, many of our regressors could be considered endogenous. Whether a firm exits

the market, exports to a particular region, owns one or more brands, and produces one or

several products, all are in the end decisions of the firms. There is little else that we can do

since there are no additional instruments available to us. In this paper we want mostly to

stress the validity of our estimation method and its applicability to better data sets. To jus-

tify our approach, we argue that exit is not a very frequent event in this sample. Similarly,

all the other potentially endogenous variables can easily be considered predetermined, at

least in the short run. We will assume that they are at least weakly exogenous as market-

ing new brands, increasing the number of production lines, and gaining access to foreign

markets requires time, resources, and managerial effort. We also need to assume that

unobservables affecting past choices are uncorrelated to unobservables affecting current

choices.

10. We have encountered nonlinearities among these regressors. After trying several com-

binations and alternative definitions for some of these dummies, we included EX · EU and
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TMHI, an indicator that firms produces at least two products, among the observable envi-

ronmental variables affecting revenues.

11. Here we have also encountered significant nonlinearities, and again after several at-

tempts, we decided to include MPRODHI to identify those firms that produce at least three

products (about 4% of the sample).

12. Models [II] and [III] are an example of the kind of overlapping models discussed in

Vuong [1989, §6]. The asymptotic distribution of tests comparing overlapping models

depends on a variance term being zero or not. An equivalent procedure to the variance

tests of Vuong [1989] is the standard likelihood ratio test comparing Model [I] versus

Model [IV]. As this test strongly rejects the null hypothesis, we can rely on the normal

asymptotic distribution of the test in last row of Table VI.
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TABLE I
DESCRIPTIVE STATISTICS

Mean Std. Dev.

OUTPUT 5.384 1.938
PRODUCT 0.347 0.476
PROCESS 0.361 0.480
EX 0.253 0.250
EU 0.419 0.493
EX · EU 0.140 0.230
TM 0.646 0.478
TMHI 0.213 0.409
AGE 2.681 0.719
MPROD 0.387 0.487
MPRODHI 0.037 0.189
EXIT 0.069 0.254
ENTRY 0.049 0.215
TIME 0.595 0.491

All variables defined in the text. OUTPUT is measured in logarithm of 1986 million
Pesetas and AGE is the logarithm of years since the creation of the firm.
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TABLE II
INNOVATION CHOICES AND SCALE OF PRODUCTION

N Freq. (%) Mean scale S.D. scale

Whole Sample

Both 88 20.4 5.29 2.20
Only product 62 14.4 5.02 2.13
Only process 68 15.7 5.56 1.75
None 214 49.5 5.47 1.80
All firms 432 5.38 1.94

Large Scale Sample

Both 63 21.1 6.37 0.78
Only product 39 13.1 6.20 0.76
Only process 46 15.4 6.42 0.86
None 150 50.3 6.30 0.84
All firms 298 6.32 0.82

Small Scale Sample

Both 25 18.7 2.58 2.29
Only product 23 17.2 3.00 2.19
Only process 22 16.4 3.77 1.78
None 64 47.8 3.53 1.95
All firms 134 3.30 2.08

N is the number of firms adopting each innovation profile and “Freq” is the share of these firms relative to
the total number of firms in each sample, Freq. We also report the mean and standard deviation, (S.D.), of
the scale of production. Large (small) scale sample only includes those firms whose output levels are above
(below) the overall mean output.
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TABLE III
UNCONDITIONAL ASSOCIATION OF STRATEGIES

Whole Sample Large Scale Sample Small Scale Sample

PRODUCT, PROCESS 0.321 [0.000] 0.350 [0.000] 0.253 [0.000]
PRODUCT, OUTPUT −0.024 [0.454] −0.001 [0.983] −0.178 [0.000]
PROCESS, OUTPUT 0.036 [0.260] 0.066 [0.042] −0.057 [0.078]

N 432 298 134

Kendall’s τ coefficients of association and asymptotic p-values between brackets. Large (small) scale sam-
ple only includes those firms whose output level is above (below) the overall mean. N is the number of
observations in each sample.
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TABLE IV
UNOBSERVED HETEROGENEITY AND CHOICE OF INNOVATION PROFILE

Si(1, 1) :


εd i > −κd i − δ

εc i > −κc i − δ

εc i > −κc i − κd i − δ− εd i
a

Si(1, 0) :


εd i > −κd i

εc i < −κc i − δ

εc i < −κc i + κd i + εd i
b

Si(0, 1) :


εd i < −κd i − δ

εc i > −κc i

εc i > −κc i + κd i + εd i
b

Si(0, 0) :


εd i < −κd i

εc i < −κc i

εc i < −κc i − κd i − δ− εd i
a

These are the conditions that simultaneously fulfill all points pertaining to Si(d, c), the set of pairs (εd i, εc i)
for which the optimal decision on innovative profile is (xd i, xc i) = (d, c).
a This condition is not binding when δ ≤ 0.
b This condition is not binding when δ ≥ 0.

– 30 –



TABLE V
MAXIMUM LIKELIHOOD ESTIMATES

Model [I] Model [II] Model [III] Model [IV]

θd CONSTANT −0.64 (0.16)∗∗∗ −0.63 (0.16)∗∗∗ −0.51 (0.21)∗∗ 0.90 (0.67)
EX −0.21 (0.35) −0.29 (0.32) −0.17 (0.35) 0.34 (0.36)
EX · EU 0.88 (0.36)∗∗ 0.97 (0.33)∗∗∗ 0.99 (0.36)∗∗∗ 0.43 (0.53)
TM 0.35 (0.15)∗∗ 0.36 (0.14)∗∗∗ 0.43 (0.15)∗∗∗ 0.39 (0.19)∗∗
TMHI −0.03 (0.16) −0.05 (0.15) 0.04 (0.17) 0.37 (0.18)∗∗
MPROD 0.07 (0.14) 0.07 (0.13) 0.08 (0.14) 0.03 (0.12)
MPRODHI 0.38 (0.34) 0.43 (0.34) 0.20 (0.34) 0.69 (0.40)∗
TIME −0.16 (0.14) −0.17 (0.14) −0.13 (0.14) −0.08 (0.13)
EXIT −0.36 (0.27) −0.35 (0.27) −0.41 (0.28) −0.62 (0.26)∗∗
ENTRY 0.33 (0.30) 0.33 (0.30) 0.24 (0.31) 0.01 (0.32)

θc CONSTANT −0.24 (0.28) −0.35 (0.26) −0.49 (0.30) −0.56 (0.41)
AGE −0.03 (0.10) 0.01 (0.09) −0.03 (0.10) −0.20 (0.11)∗
MPROD −0.02 (0.13) −0.02 (0.13) −0.03 (0.13) −0.02 (0.11)
MPRODHI 1.54 (0.41)∗∗∗ 1.59 (0.42)∗∗∗ 1.58 (0.43)∗∗∗ 1.30 (0.47)∗∗∗
TIME −0.11 (0.14) −0.12 (0.14) −0.08 (0.14) −0.13 (0.12)
EXIT −0.30 (0.27) −0.29 (0.27) −0.25 (0.27) −0.12 (0.26)
ENTRY 0.09 (0.32) 0.15 (0.32) 0.05 (0.33) 0.15 (0.29)

θy CONSTANT 3.26 (0.38)∗∗∗ 3.33 (0.38)∗∗∗ 3.30 (0.38)∗∗∗ 3.29 (0.39)∗∗∗
EX 1.02 (0.44)∗∗ 1.04 (0.45)∗∗ 1.01 (0.44)∗∗ 1.05 (0.42)∗∗
EX · EU −0.10 (0.48) −0.11 (0.48) −0.07 (0.48) 0.04 (0.48)
TM 0.44 (0.19)∗∗ 0.44 (0.19)∗∗ 0.45 (0.19)∗∗ 0.48 (0.19)∗∗
TMHI 0.97 (0.22)∗∗∗ 0.97 (0.22)∗∗∗ 0.97 (0.22)∗∗∗ 0.90 (0.23)∗∗∗
AGE 0.52 (0.13)∗∗∗ 0.49 (0.13)∗∗∗ 0.52 (0.13)∗∗∗ 0.51 (0.13)∗∗∗
TIME 0.13 (0.19) 0.14 (0.19) 0.13 (0.19) 0.12 (0.19)
EXIT −1.00 (0.35)∗∗∗ −1.01 (0.35)∗∗∗ −1.01 (0.35)∗∗∗ −1.02 (0.35)∗∗∗
ENTRY −0.40 (0.44) −0.44 (0.44) −0.40 (0.44) −0.39 (0.44)

δdc 0.52 (0.08)∗∗∗ −0.50 (0.36)
δdy −0.08 (0.03)∗∗∗ −0.27 (0.14)∗∗
δcy 0.01 (0.03) 0.19 (0.10)∗

ρdc 0.55 (0.06)∗∗∗ 0.64 (0.26)∗∗
ρdy −0.15 (0.06)∗∗ 0.40 (0.29)
ρcy −0.04 (0.06) −0.40 (0.20)∗∗

σy 1.75 (0.06)∗∗∗ 1.75 (0.06)∗∗∗ 1.75 (0.06)∗∗∗ 1.74 (0.06)∗∗∗

ln L −1396.3 −1367.8 −1367.9 −1364.5
χ2 132.7∗∗∗ 137.2∗∗∗ 136.3∗∗∗ 121.2∗∗∗

Maximum likelihood estimates and their standard errors in parentheses. Estimates found different from
zero at significance levels 10%, 5% and 1% are marked with ∗∗∗, ∗∗, and ∗, respectively. ln L is the value of
the likelihood function at the maximum. Last row shows Wald tests for the joint significance of the slopes
of θd i, θc i, and θy i. These tests are asymptotically distributed as a χ2 with 23 degrees of freedom.
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TABLE VI
MODEL SELECTION TESTS

H0 H1 d. f. Test p-value

Model [I] Model [II] 3 57.02 0.000
Model [I] Model [III] 3 56.94 0.000
Model [I] Model [IV] 6 63.59 0.000
Model [II] Model [IV] 3 6.57 0.087
Model [III] Model [IV] 3 6.65 0.084

Model [II] Model [III] 0.04 0.972

All rows, except the last one, reports likelihood ratio tests with null and alternative hypotheses as indicated
in columns ‘H0’ and ‘H1’. The asymptotic distribution of these tests is a χ2 with ‘d. f.’ degrees of freedom.
The last row reports a Vuong test of non-nested hypotheses to compare Models [II] and [III] which is dis-
tributed as standard normal under the null hypothesis of equivalence of both models. Significant positive
values of this test favor Model [II] while significant negative values favor Model [III].
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FIGURE 1
INNOVATION PROFILE DEFINING REGIONS
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