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Abstract

Can a government induce efficiency gains in his domestic industry by pro-
tecting it against foreign competition? Would such trade protection be
time–consistent? The present paper builds a dynamic equilibrium model
that accounts for learning–by–doing effects that link firms’ strategies over
time. The model shows that the existence of dynamic economies of scale
suffices to overcome the traditional government’s lack of commitment of
its tariff policy. This paper compares the infinite horizon Markov Perfect
Equilibrium of this game with the dynamic equilibrium under commitment
as well as the static Nash equilibrium. Equilibrium strategies are derived in
closed form by solving a linear–quadratic differential game. Optimal trade
policy involves higher tariff levels than in the static setup in order to account
for future gains in efficiency. Under reasonable assumptions, the unique
stable MPE is characterized by a domestic price and tariff that decrease as
experience accumulates, thus supporting the future liberalization of trade as
an equilibrium feature of this dynamic game. JEL: C73, F12, F13.
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1 Introduction

Infant industry arguments have long been used to justify protectionist trade policies. The

essence of such arguments is that local producers must be allowed some time to overcome

a temporary disadvantage with respect to foreign competitors. This disadvantage might

come from technological backwardness, lack of access to efficient credit markets, local

scarcity of the required human capital, or lack of an established reputation. However, the

existence of a temporary disadvantage is not sufficient to justify protection. For this, two

additional conditions must be satisfied.

First, overcoming the initial handicap must be socially beneficial although not

necessarily privately profitable (at least in the short run). This requires some sort of future

positive externality to compensate the current welfare loss associated to any protection

policies. One possible externality is due to the existence of dynamic economies of scale

in the industry. [Corden (1974, §9); Krugman (1984)]. Another type of externality is

associated to the existence of experience goods in consumption. Governments could create

temporary trade barriers against imports with the argument of defense of diversity through

the promotion of the local variety. Thus, temporary protection would generate dynamic

efficiency gains through increases in production and/or improved management methods,

but also in developing a biased taste for domestically produced goods.

Second, policy intervention must be effective. At least two problems may arise

here. One difficulty is that protection policies designed to help domestic producers to

become internationally competitive may lead to socially costly collusion between foreign

and domestic firms [Gruenspecht, (1988)], or among domestic infant–firms in a protective

environment. The second difficulty is that protection should only be granted for the

shortest period possible required to make domestic firms competitive. In other words, the

government must be able to credibly commit to liberalize trade within a reasonable period

of time. Unfortunately, governments can rarely commit credibly to trade policies for more

than short periods of time: laws can be changed, treaties can be broken, and government

turnover might be high. As pointed out by Matsuyama (1990) this lack of commitment of

governments to liberalize trade may explain the persistence of tariff protection. Given the
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governments’ lack of commitment (political, institutional, or due to lack of reputation),

local firms prefer not to become internationally competitive, and given that strategic choice,

the best policy for the government is to extend trade protection for some additional period.

This paper presents a framework that identifies a time–consistent tariff protection

policy by incorporating the dynamic issues surrounding infant–industries. In doing so I

am addressing some common shortcomings in the current treatment of the topic in the

trade literature. The basic elements of the model are the following.

1. Tariff Protection Policy: While subsidies or quotas may achieve the same goal of

protecting an infant–industry, I choose to study the case of tariff protection policy because

this is the instrument most frequently used to protect industries in the early stages of

development. Tariff protection was already vindicated by some classic economists, such as

List in the 19th Century, as an effective tool to reduce the gap between less developed and

industrialized countries.1

An additional reason for addressing the case of tariff protection policy is that the

model shows how its effectiveness relies on the existence of a taste for variety, which is

not required in the case of a subsidy. Thus, protection facilitates local production by

introducing a temporary price distortion against imports. An optimally designed tariff

should balance the inter–temporal substitution effects of these differentiated goods to the

future gains of productivity by domestic firms. It might happen that a strongly biased

preference for foreign goods turns socially inefficient any kind of protection unless learning

takes place almost instantaneously.

2. Dynamic Economies of Scale: Infant–industries, as envisioned by Protectionists,

will benefit from protection merely by having the possibility to produce. Learning by doing

is the only source of marginal cost reductions. Additional investments, while possible, are

not critical elements of the model. Learning by doing shifts our attention to a framework

with truly dynamic strategies where payoffs of different periods are dependent on previous

1 The commonly intended superiority of subsidies over tariffs can only be explained because the
shadow cost of rising funds in the rest of the economy is unreasonably assumed to be zero.
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pricing or production decisions of the domestic firms through the dynamic linkage of its

induced marginal cost reductions.

The economic literature has focused frequently in the case where dynamic linkages

are not present and thus, investment decisions become independent of the state of the

game. For instance in Matsuyama’s (1990) model, the domestic firm and the government

play a repeated bargaining game where the firm asks for temporary protection in order

to develop a cost reducing investment, while the government wants to liberalize trade to

maximize welfare. A period later, if the government chose to protect and the firm did

not invest, the game remains identical to the one played one period before. However,

if learning by doing is considered, there exists at least one state variable, e.g., the level

accumulated output, experience, or just the marginal cost, that differs from the previous

period due to production. The critical feature of Matsuyama’s (1990) model, also present

in the work of Miyagiwa and Ohno (1995) and Tornell (1991), is the absence of a dynamic

linkage between firms’ decisions over time, so that the optimal protection policy becomes

time–independent.

By explicitly considering dynamic economies of scale the present approach looses

the state–independence of Matsuyama’s (1990) model. I therefore require that strategies of

the government and the domestic infant–monopolist be dependent on the state of the game.

I will therefore restrict my attention to Markov strategies. Focusing in the class of linear–

quadratic differential games, the present approach allows me to explicitly characterize an

equilibrium where the government’s tariff and the monopolist’s production schedule are

dynamic best responses to each other.

3. Time Consistency: A common criticism to protection policy is the lack of cred-

ibility of the government to ending such policy. An example of this lack of commitment

to future liberalization is Tornell’s (1991) model of ‘investment–contingent’ tariffs. In that

model, when players reach the supposedly last period of the game, they suddenly become

exogenously endowed with asymmetric bargaining power, which makes the government

to reconsider its liberalization policy, thus extending protection ‘beyond the horizon’ of

the game. Two elements of Tornell’s (1991) model are worth mentioning here. First,
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the government’s strategy does not fulfill Markov perfection because at the end of the

game protection level is not really determined by past investments of firms whose capital

accumulation represents the state of the game, but rather by the firm’s threat of increased

unemployment. A proper Markov strategy should had accounted for this possibility when

computing the investment–contingent protection schedule. Second, the game appears to

continue beyond the initial two–period horizon that is so unfortunately common in the

trade literature whenever time consistency is questioned. In Tornell’s (1991) model, firms

actually care for protection beyond the formal finite horizon of the game because their

expected payoffs are not restricted to these two periods. Similarly, the government has

to care about the future rents of domestic producers when, otherwise it would be optimal

from a static point of view to liberalize trade in the supposedly last period of the game.

In order to address the time consistency of the tariff I will focus on Markov strategies

defined for infinite horizon games where the possibility of extending protection disappears.

This modeling approach may need some justification since it is not common in the trade

literature. First, Markov perfection requires that the effect of past actions can be sum-

marized by the state of the game along the equilibrium path. In the present model, the

state is represented by the level of marginal cost of the domestic monopolist. Thus, both

the monopolist’s production schedule and the government’s tariff are contingent on this

level of marginal cost, whose change leads to a dynamic linkage of strategies over time.

Second, players’ continuation payoffs at the end of the game should have no effect on

the equilibrium tariffs, as it actually happens, for instance, in Tornell (1991), Leahy and

Neary (1999), and Miyagiwa and Ohno (1999). In all these models the choice of the horizon

length is exogenous and serves the role of simplifying the computation of equilibria. Any

subgame perfect equilibria of a finite horizon game is then time–consistent by definition.

Restricting the attention to Markov strategies, any Markov Perfect Equilibria (MPE) of a

finite T–period game will also be time consistent according to this common view.

I however do not find this definition of time consistency very compelling for problems

of tariff protection. A major issue in the game played between the government and firms

is always whether firms may convince the government to extend protection beyond the

horizon initially announced. Assigning some positive probability to such event implies that
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the computation of optimal strategies for a finite horizon of T–periods includes potential

continuation payoffs beyond such time horizon T , thus making firms to behave strategically

regarding their output or pricing decisions in order to induce an extension of protection

that allows them to increase the present value of profits.

The model works as follows. Initially a domestic monopolist faces a very high

marginal cost of production that make impossible for her to compete with cost efficient

foreign firms that produce a slightly differentiated product. There are however important

potential dynamic economies of scale due to learning by doing. The monopolist asks for

temporary protection to allow her to reduce her marginal cost and be able to compete once

trade is liberalized. The government faces a dynamic trade–off in granting such protection.

Consumer surplus will be reduced today due to high cost of domestic production as well

as for the high cost of imports induced by the tariff. However, consumer surplus could be

enhanced in the future by ensuring the production of the differentiated domestic output and

future welfare would be further increased by the profits of a cost efficient domestic industry.

The domestic monopolist’s pricing decisions over time and the government’s schedule of

tariffs are made contingent on the marginal cost of the monopolist that captures the state

of the game. Strategies are then contingent on the performance of the monopolist through

marginal cost reductions induced by pricing and tariff decisions. In equilibrium, both

strategies should be the dynamic optimal best response to each other player’s strategy. As

learning is exhausted, the state converges to its stationary level and price and tariff remain

constant from that moment on.

In this framework, the government will credibly bring the level of protection over

time up to the stationary level, which may indeed involve an optimal zero tariff, without

any need for some exogenous commitment device. This strategy becomes its best dynamic

response to the monopolist’s also optimal pricing, or equivalently to her production deci-

sions. Intuitively, this result relies on two features of learning by doing mechanisms. Firstly,

the marginal social benefit of future learning decreases as the local firm “goes down its

learning curve.” Secondly, with learning by doing the domestic firm cannot reap the rents

from protection without at the same time becoming progressively more efficient: rents are

only obtained for positive levels of output once the domestic firm is competitive against
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foreign producers, but positive levels of output induce learning and greater efficiency. In

other words, learning by doing ties “innovation” and “rent enjoyment” inexorably together.

The paper builds a dynamic equilibrium model of optimal tariff design when learning

economies exist and strategies are state contingent. In order to show time–consistency

of the equilibrium strategies, the model technical requirements are kept to a minimum.

For analytical tractability I use a linear demand specification and learning is assumed to

reduce marginal costs. Formally, the model is related to the capital accumulation games

of Driskill and McCafferty (1989) and Reynolds (1987), although in the present case the

game is not symmetric. The accumulation of experience is translated into a reduction of

the monopolist’s marginal cost thanks to her own pricing decisions and the tariff decisions

of the government. Dynamic considerations lead to domestic prices that are lower or higher

than under the static Nash equilibrium depending on the ability of the players to commit

to some pricing–tariff schedule. The optimal dynamic tariff is always more protective than

myopic static tariff protection policies. The combined effect of higher domestic prices and

tariffs induce smaller cost reductions relative to the static equilibrium.

The paper is organized as follows. In section 2, the model and its assumptions

are described. Section 3 solves the static Nash equilibrium that ignores any dynamic

effects induced by current production decision. Section 4 incorporates such dynamic

considerations in a particular framework where both the monopolist and the government

can commit to the announced strategies and characterizes a Nash equilibrium in open–loop

strategies. This section also discusses the validity of such commitment ability. Section 5

characterizes the Markov perfect equilibrium in closed–loop strategies that are dynamic

optimal best responses so that some external source of commitment to such policy is not

needed. Section 6 concludes.

2 Industry Protection with Dynamic Economies of Scale

The game consists of two players: a domestic monopolist and the government of a small

country. Initially, foreign firms are much more efficient but the domestic monopolist
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enjoys dynamic economies of scale. Therefore, the domestic monopolist asks for temporary

protection so that today’s sales induce cost reductions and thus allows her to compete in

the future once protection is lifted. The government may consider temporary protection

because today’s reduction in consumer surplus due to high tariffs may get compensated

with the increase in monopoly profits, but more importantly because this protection

induces a more efficient future provision of the differentiated, domestically produced good.

The model is written in continuous time. The only state variable is the level of

marginal cost. Technology is characterized with instantaneous constant returns to scale

but marginal cost declines with output due to learning by doing. Current tariff and pricing

decisions incorporate an investment component unless learning is exhausted. I also consider

the possibility that experience depreciates over time so that some minimum production

level is required at every period to ensure a net reduction of the monopolist’s marginal

cost.

To show that there may exist a time consistent tariff policy and that its existence

does not require any external source of commitment, I restrict my attention to the case

where both, the monopolist and the government use strategies that are contingent on

the state of the game, i.e., the level of marginal cost at each time. The optimal tariff

and production schedule is found by characterizing the subgame perfect equilibria in an

infinite horizon game where players are restricted to use Markov strategies. The model is

solved for the infinite–horizon case to ensure that endpoint transversality conditions are

not binding and rule out the possibility that neither the monopolist or the government

may be tempted to consider any further extension of protection.

2.1 Demand System

Domestic and foreign products are considered imperfect substitutes by domestic consumers.

Let Xt denote the domestic monopolist’s production and let M t denote imports at time

t. Assume a quadratic utility function with symmetric cross–effects that is additively

separable with respect to money:
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U [Xt,M t] = axX
t + amM

t − 1
2

[
bx(Xt)2 + bm(M t)2 + 2kXtM t

]
, (1)

where all parameters ax, am, bx, bm, k, are strictly positive. The sufficient condition

∆ = bxbm − k2 > 0 ensures that the utility function is strictly concave. At each time, t,

domestic consumers maximize U [Xt,M t] subject to the budget constraint:

It = Qt
0 + P tXt + (1 + τ t)M t, (2)

where Qt
0 represents the aggregate consumption of a competitive numeraire good, and

τ t is the import tariff rate. Foreign firms are competitive and have exhausted learning

economies, so that the price of foreign products remain constant at the foreign firms’

marginal cost.2 Since the foreign price of imports only plays a residual role in the model,

it has been normalized to one. Thus P t represents the price of domestic production relative

to the price of foreign products before the tariff is applied. The solution of this problem

can be written as follows:3[
ax − P

am − (1 + τ)

]
=

[
bx k
k bm

] [
X
M

]
. (3)

The demand for domestic and imported goods as functions of their prices and import tariff

then becomes:4

X(P, τ) = α− βP + γ(1 + τ), (4a)

M(P, τ) = 1 + γP − (1 + τ) = γP − τ, (4b)

where α = (axbm − amk)/∆ > 0, β = bm/∆ > 0, γ = k/∆ > 0. Finally, consumer surplus

is given by:

CS(P, τ) = U [X(P, τ),M(P, τ)]− P ·X(P, τ)− (1 + τ) ·M(P, τ). (5)

2 The assumption of a foreign industry that has exhausted learning is just an extreme case where
foreign industries are obviously more developed. But this assumption excludes also the possibility of
dynamic strategic effects of current decisions of the domestic firm over foreign firms and vice versa, which
will surely make the characterization of the solution of the model impossible unless we rely on numerical
methods.

3 Time superscripts are dropped unless their omission may induce ambiguous interpretation.

4 The intercept and own–price effect of the demand for imports have been normalized to one. In
computing equilibria and comparative statics, the values of α and β should be understood as relative
magnitudes with respect to the demand for imported products. Technical details and most analytical
developments of this and other sections are reported in the Appendix.
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Observe that demand does not induce any additional dynamic effect because of its sta-

tionary linear specification. Welfare gains from protection might be higher than those

highlighted in this model if, in addition, consumption induces dynamic effects on con-

sumers’ utility (experience goods), and/or if demand grows over time.

2.2 Marginal Cost Reduction

Technology exhibits instantaneous constant returns to scale but marginal cost, c, is reduced

over time while the domestic firm accumulates output. The level of marginal cost is

related to the accumulation of experience by the domestic firm. I consider the possibility

of depreciation of experience, or in an alternative interpretation, the existence of potential

adjustments costs in the accumulation of such experience.5 The payoff relevant measure

of experience is the level of marginal cost. The reduction in marginal cost is described as:6

ċ = −λ[X − δc] = −λ[(α+ γ)− βP + γτ − δc]. (6)

Parameter λ ≥ 0 represents the marginal cost reduction effect per unit of output, while

δ ≥ 0 captures the idea that the value of experience depreciates over time so that recent

output decisions have a stronger effect on the current level of marginal cost than early

ones. I will later consider the “limit game” case when δ → 0.

2.3 The Monopolist’s Problem

In an infinite horizon game, the monopolist’s problem is to maximize the present value of

her profits given the government’s tariff, while considering the learning effects induced by

current production through her pricing decisions. This problem can be stated as:

max
P

∞∫
0

π(P, τ , c)e−rtdt s.t. ċ = −λ[X − δc] ; c(0) = c0. (7a)

5 Differential games need of the existence of an adjustment cost to avoid that the dynamic model
just consist on the infinite repetition of the corresponding static stage game. This is the role, for instance,
of the sticky price assumption in Fershtman and Kamien (1987, 1990), or the depreciation of capital in
Reynolds (1987, 1991). The existence of an adjustment cost allows us to identify stationary equilibria in
dynamic games.

6 Observe that marginal cost c, may be increasing if current output does not exceeds δc. This may
capture the idea that whenever firms stop investing, they become less competitive.
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The instantaneous, constrained, monopoly profits are represented by the following Hamil-

tonian:

HF = [α− βP + γ(1 + τ)](P − c− λµf ) + λδcµf . (7b)

2.4 The Government’s Problem

The government’s problem is to maximize the present value of the sum of consumer

surplus, monopoly profits, and tariff revenues, given the monopolist’s pricing strategy

and accounting for the effects induced by the tariff policy:

max
τ

∞∫
0

[CS(P, τ) + π(P, τ , c) +R(P, τ)] e−rtdt s.t. ċ = −λ[X−δc] ; c(0) = c0, (8a)

so that the Hamiltonian associated to the welfare function becomes (see Appendix):

HG =
[
α+ γ

β − γ2
− c− λµg

]
[α− βP + γ(1 + τ)] + γ

α+ γ

β − γ2
[γP − τ ] + λδcµg

− [α− βP + γ(1 + τ)]2

2(β − γ2)
− β[γP − τ ]2

2(β − γ2)
− γ[α− βP + γ(1 + τ)][γP − τ ]

β − γ2
, (8b)

where I made use of the tariff revenue function:

R(P, τ) = τ [γP − τ ]. (9)

2.5 The Game

The government has to choose the optimal tariff τ̂ that induces marginal cost reductions

through increasing of production of the domestic monopolist, such as it suffices to com-

pensate for the reduction in consumer surplus due to the higher prices paid for imports.

Although there are several concepts of equilibrium that I will explore in later sections of

the paper, the basic idea is that the tariff has to be the dynamic best response to the firm’s

pricing strategy and vice versa. The optimal level of protection will be conditioned by the

potential cost reduction that can be achieved with an additional unit of domestic output.
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Obviously this is determined by the level of marginal cost c, which represents the state of

the game. Similarly, the firm has to choose the optimal pricing strategy P̂ that maximizes

the present value of her profits while accounting for the dynamic effects induced by the

reduction of her costs as well as the government’s tariff policy. Again, the optimal pricing

strategy will depend on the level of marginal cost. Consequently, the level of marginal

cost in later periods will be determined by the pricing and tariff strategies applied by the

monopolist and government respectively.

In games like this one, the state follows a Markov process in the sense that the

state of the next period is a function of the current state and actions, and hence, the

history at t can be summarized by ct. To solve this model, I assume perfect information,

which implies that both the government and the monopolist know the history of the game,

i.e., the previous realizations of the state, cs, and the vector of control variables, {P s, τ s},

∀s ≤ t. Markov strategies depend only on the state of the system, and players’ information

sets include only the payoff–relevant history [Maskin and Tirole (1994)]. Markov perfection

requires that these strategies are perfect equilibria for any time and state [Fudenberg and

Tirole (1986, §2b)]. A differential game equilibrium of this model is a set of functions

{P̂ (c), τ̂(c)} such that for any time and state, a player’s strategy maximizes its payoff from

that time on. Applying dynamic programming, the differential game equilibrium of this

model solves the following set of generalized Hamilton–Jacobi conditions:7

HF
P = α− β(2P − c− λµf ) + γ(1 + τ) = 0, (10a)

µ̇f = (r − λδ)µf + [α− βP + γ(1 + τ)]− γ[P − c− λµf ]τ̂c. (10b)

Similarly, the optimality conditions for the government are:

HG
τ = γ(P − c− λµg)− τ = 0, (11a)

µ̇g = (r − λδ)µg + [α− βP + γ(1 + τ)] + [γτ − β(P + c+ λµg)]P̂c. (11b)

It is useful to write down the dynamic optimality conditions of this system. In order

to obtain them, substitute µf and µg in (10b) and (11b) from (10a) and (11a) respectively.

7 See for instance Fudenberg and Tirole (1991, §13.3.2) or Vives (1999, §9.2.3).
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Differentiate (10a) and (11a) making use of (6) to obtain µ̇f and µ̇g and substitute the

expressions for these time derivatives of the co–state variables into (10b) and (11b). Thus: (α+ γ)(r − λδ + γλτ̂c) + (r − 2λδ)βc

(r − 2λδ)γc

 =

 2β −γ

γ −1

 (r − λδ)P − Ṗ

(r − λδ)τ − τ̇



+ λ

 τ̂c 0

0 P̂c

 βγ −γ2

−2βγ β + γ2

P
τ

. (12)

Evidently, this system of partial differential equations is not easily solved in closed form

except for the case of some particular functional specifications such as the linear–quadratic

case of the present model. In addition, in dynamic models like this one, the nature of the

solution critically depends on the information set that players use. The following sections

present a detailed analysis of three alternative equilibrium strategies: static, dynamic with

commitment, and dynamic without commitment. This step–by–step approach is useful to

isolate the effect of learning as well as to address the issue of commitment and credibility

of the announced tariff protection policy.

3 Optimal Static Protection

Suppose that the government and the domestic monopolist play a one–shot game. They

choose the tariff and the price of the domestic product that maximizes total welfare and

profits respectively. Dynamic considerations about marginal cost are not relevant since the

game will not be played in later periods. Co-state variables have no role because the current

strategies of players do not affect future payoffs, so that µf = µ̇f = µg = µ̇g = 0. Thus, the

static Nash equilibrium (SNE) of this game is found by solving equations (10a) and (11a)

while ignoring µf and µg. Alternatively, solve (12) assuming Ṗ = τ̇ = P̂c = τ̂c = λ = 0.

Proposition 1: The SNE strategies are:

PN =
α+ γ + (β − γ2)c

2β − γ2
, (13a)

τN =
γ[α+ γ − βc]

2β − γ2
. (13b)
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Concavity of consumers’ utility function ensures that PN > 0. The SNE price

increases with α, γ, and c, i.e., with positive non–price related shifts of demand, the

domestic firm’s marginal cost, and the degree of substitution between the domestic and

foreign product. The SNE tariff increases with α but decreases with β and c. The SNE also

increases with γ. The closer substitutes are imports to domestic production, the higher

the tariff protection needed to ensure the production of the domestic variety.

Condition α+ γ − βc ≥ 0 ensures not only that the tariff is positive, but also that

the domestic firm prices above the marginal cost. If marginal cost c is so high relative

to the demand parameters that only allows the domestic firm to sell its production by

pricing below the marginal cost, then we have reached a corner solution where the domestic

monopolist does not produce and the government has no interest in establishing a tariff on

imports. Since the problem is static, ċ = 0. Evaluating the outcome at the steady state

level of output δc given by equation (6), and making use of of the static Nash solution

(13), the associated level of marginal cost in this static equilibrium is:

cN =
(α+ γ)β

(2β − γ2)δ + β2
. (14)

This SNE ignores, by definition, all dynamic effects that link current production

to future cost reductions. The solution presented here will be useful to compare the

equilibrium impact of these dynamic effects for different informational assumptions.

4 Committing to Protect and Produce

In this section we turn our attention to dynamic strategies. I first focus in situations in

which both the government and the domestic monopolist have the ability to commit to some

strategy announced at the initial state of the game, leading to an open–loop equilibrium

(OLE). This section characterizes such equilibrium and compares it to the SNE. I also

discuss the validity of this commitment assumption.

An OLE is a Nash equilibrium in open–loop strategies. In practice this means

that at t = 0 the firm announces a schedule of prices, {P s}s=∞
s=0 , while the government
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announces a schedule of tariffs, {τ s}s=∞
s=0 for the infinite horizon of the game. The game

is only dynamic because it involves price and tariff decisions over the whole horizon of

the game, but truly dynamic interactions are omitted because both schedules are one–shot

decisions announced at the beginning of the game. The concept of OLE assumes that both

firm and government can commit to carry the announced strategies regardless of how the

game evolves in the future. This is actually the source of most time–consistency problems

that characterizes many dynamic economic models.8

Since the game involves several periods, players will only account for the effect of

their own control strategies on the state of the game. Thus, co–state variables µf and µg

now appear in the objective function of the firm and the government respectively. Since

they account for payoff consequences of changes in the state, the effect of HF
c and HG

c on

the co-state variables µf and µg are also considered. But because the announcement is

made at the beginning of the game, players cannot take into account any feedback effect of

the decisions of their opponents. Thus, the stationary OLE solves (12), although making

Ṗ = τ̇ = P̂c = τ̂c = 0.

Proposition 2: The stationary OLE strategies are:

P ◦ =
(α+ γ)(r − λδ) + (r − 2λδ)(β − γ2)c

(r − λδ)(2β − γ2)
, (15a)

τ◦ =
γ[(α+ γ)(r − λδ)− (r − 2λδ)βc]

(r − λδ)(2β − γ2)
. (15b)

Proposition 3: The stationary OLE is globally stable if: 9

r < λδ. (16)

Proposition 4: The stationary OLE coincides with the SNE whenever λ=0, δ=0,

or c=0.

8 In addition to the trade literature discussed in the Introduction, see for instance Miyagiwa and
Ohno (1999), Pearce and Stacchetti (1997), and Staiger and Tabellini (1987).

9 Observe that one implication of this stability condition is that P ◦ is increasing in c, similar to the
behavior of PN . The derivative of τ◦ with respect to c is also negative, similarly to the case of τN .
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If c= 0 no further cost reductions are possible, and the game becomes necessarily

static. When λ=0 there is no dynamic linkage between current production and marginal

cost reduction, and thus the model also becomes static. When δ=0 experience does not

depreciates over time. Therefore, it is not necessary to produce any output just to maintain

the same level of marginal cost of the previous period. The combined effect of these two

dynamic elements leads to the following result.

Proposition 5: In the stationary OLE, the equilibrium tariff exceeds the SNE

tariff, but the equilibrium price is lower than in the SNE case:

P ◦ − PN =
λδ(β − γ2)c

(r − λδ)(2β − γ2)
< 0, (17a)

τ◦ − τN =
−γλδβc

(r − λδ)(2β − γ2)
> 0. (17b)

Therefore, the monopolist has a stronger dynamic incentive to underprice (overproduce)

relative to the static setting the less substitutable domestic product and imports are (low

γ). This optimal dynamic strategy increases the present value of the marginal revenue of

the monopolist while minimizing the investment in marginal cost reduction.

Since the monopolist does not internalize the reduction in consumer surplus due to

the high price of the domestic product, the optimal strategy for the government involves

a higher tariff than in the static case. Sometimes, if the initial marginal costs are high

enough, only if the government intervenes the monopolist will produce. In intermediate

cases, government protection will maximize total welfare by speeding up the process of

learning by doing by the domestic producer. By being more protective, the government

ensures some additional market power to the domestic monopolist to induce further cost

reductions that later compensate the current reduction in consumer surplus due to high

prices of the domestic product. Observe that the increase in the optimal OLE relative to

the SNE tariff is more important the higher the cost of the domestic monopolist c, the

more elastic is the demand for the domestic product (large β), or the less substitutable

domestic and foreign goods are (small γ).

The combined effect of these equilibrium pricing and tariff strategies is to lower the

stationary equilibrium level of the monopolist’s marginal cost relative to the SNE. This
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is a direct consequence of the monopolist and the government accounting for the future

savings induced by their pricing and tariff decisions.

Proposition 6: In the stable stationary OLE, the domestic monopolist’s marginal

cost is positive but below the level in the SNE:

0 < c◦ =
(α+ γ)(r − λδ)β

(r − λδ)(2β − γ2)δ + (r − 2λδ)β2
< cN . (18)

Both cN and c◦ are increasing in α and γ but decreasing in β and δ. Observe

however that the difference among them disappears when δ = 0 even if learning effects are

significant, i.e., λ > 0. This “limit game” without adjustment cost turns into an infinitely

repeated static game. This result is important because if we ignore the depreciation of

experience, dynamic models would lead to exactly the same steady state level of marginal

cost in the long run. However, the more important is the effect of the depreciation of

experience, the lower the stationary equilibrium level of the marginal cost would be relative

to the static equilibrium.

4.1 Is Commitment Credible?

Frequently, trade models find that governments have no dynamic incentives to reduce

protection. These models, e.g., Miyagiwa and Ohno (1995), only address the case of ho-

mogeneous products. The present model replicates these results for the case of independent

goods, γ = 0, and when the stationary open–loop tariff coincides with the optimal static

one. This result is important because the present model also shows that if domestic and

foreign products are slightly differentiated, then governments will more likely consider

dynamic effects, and therefore they will increase tariff protection relative to the static

case to successfully induce marginal cost reductions by the domestic producer. This is a

consideration that has so far been ignored in the trade literature.

The comparison between OLE and SNE of equations (17a) − (17b) also illustrates

a common criticism to protection policies. In general, the domestic monopolist is now

more aggressive than in the static framework, charging lower prices and speeding up cost
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reduction. The government’s optimal tariff policy is now more protective than in the

static case. The government has to make imports less attractive the higher is the initial

disadvantage of the domestic firm. This policy might be very damaging to consumers who

bear the cost of protection by facing higher domestic prices of imports as well as higher

prices of domestically produced goods until significant learning has been realized. But

this policy also ensures that only the minimum additional market power is granted to the

domestic monopolist to effectively induce cost reductions while minimizing the combined

loss of consumer surplus due to high prices of domestic good and imports, while allowing

the monopolist to keep producing, and therefore further reducing her marginal cost.

Will this protection policy be actually enforced? Most likely not. The monopolist

and the government receive feedback information as the game evolves. They do not use

this information only because of the way open–loop strategies are defined. But it is not

reasonable that they do not make use of such information in a later state of the game if it

is in their own interest to do so. The government may find that the monopolist is reducing

her cost very slowly. A low tariff or an early liberalization of trade may put in danger the

survival of the domestic production and jeopardize the whole intention of the protection

policy. Thus, the government will most likely deviate from the announced tariff schedule

either by increasing the import tariff or postponing trade liberalization. Similarly, the

monopolist may find that the government’s tariff is lower than expected and that it does

not ensure her survival in the long run. The monopolist then deviates from her announced

strategy by increasing her price to maximize the rent extraction while protection lasts.10

According to Reynolds (1987, §3), there are two main reasons why we can consider

open–loop strategies. First, open–loop strategies are reasonable when players are unable

to observe the state affecting decisions of the other players after the beginning of the

10 These are the typical cases commonly documented in the theoretical and trade policy literature.
However, they are not the only possible deviations from an OLE. At least in theory, it is also possible that
the government discovers that his tariff is too high, thus reducing consumer surplus too much while allowing
the domestic monopolist an excessive market power. The government may then find optimal to modify his
tariff policy in order to reduce the inefficiency of the announced tariff. Similarly, the monopolist may find
that the announced tariff is so high that it shifts demand for the domestic good beyond her expectations.
In such a case, the monopolist will also find optimal to deviate from the announced pricing schedule to
lower her marginal cost and thus increase her profit margin as much and as long as possible. The lack of
commitment is also present in these two latter cases.
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game. This is not the case in the present model. The monopolist always observes her

marginal cost and the government, even when he cannot observe it directly, can infer

it with certainty from the monopolist’s price and the known parameters of demand and

marginal cost dynamics.

The second reason given by Reynolds is that the rules of the game may require

precommitment to open–loop strategies. This is the case of trade agreements, multilateral

agreements through the WTO, and even the passing of constitutional amendments. All

these mechanisms are ways to signal that the government is going to commit to certain

trade policy, perhaps leading to trade liberalization in the future. But, as pointed out

by the examples discussed before, open–loop strategies are not dynamic best responses to

each other player’s strategy because they were decided at the beginning of the game and

neglect, by definition, any potential feedback effect, i.e., any payoff relevant action of the

other player that may have an unexpected effect on the evolution of the game.

If the difference between the expected and actual payoffs compensates potentially

important transaction or reputation costs, the government will break any trade agreement

or modify any necessary constitutional amendments, thus easily turning tariff protec-

tion permanent. This is the result systematically reported in the trade literature using

time–independent strategies in models without dynamic linkage of payoffs over time, e.g.,

Miyagiwa and Ohno (1995) and Tornell (1991). This section has shown that using state–

contingent strategies that account only for each player’s own–induced dynamic effects is not

sufficient to avoid time–consistency problems. The next section studies how to characterize

a tariff protection policy that is robust to the time–inconsistency criticism.

5 Optimal Dynamic Protection

In this section I address the solution of the model when both players take into account not

only the dynamic effects induced by their own strategies, but also recognize the dynamic

effects induced by the other player’s strategy. Thus, P̂c and τ̂c in equation (12) are not

assumed zero anymore. Now the monopolist’s pricing and the government’s tariff strategies
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are going to be made explicit functions of the state of the game c, i.e., we will use Markov

strategies.

Contrary to the OLE solution of the previous section, the sequence of prices and

tariffs that characterize the closed–loop solution cannot be announced at the initial stage

of the game. Neither the government or the monopolist need to commit to a predetermined

sequence of actions, as they will optimally choose their strategies at each state of the game.

An MPE is just a subgame perfect equilibrium in Markov strategies. Thus, players take

into account each other actions and the equilibrium strategies have to be optimal from any

time t onwards. Therefore, the equilibrium strategies are by definition time–consistent.11

Solving for MPE is analytically much more involved than characterizing SNE or

OLE strategies. Since the model is not symmetric, solving for MPE requires to find

the intersections among the two hyperbolas that represent the system of four nonlinear

optimality conditions. There are two approaches to deal with such difficult problem: i)

Solve the model numerically, find the multiple solutions and identify stable equilibria; ii)

Analyze how does the solution depends on the parameters of the model.

The first approach is valid if we want to evaluate the model for a given set of

parameters, perhaps corresponding to a particular calibration or estimation of demands,

costs, and learning effect parameters. This approach however lacks generality and although

several sensitivity exercises may confirm the robustness of the features of the found MPE,

it is not easy to identify the effect of each parameter on the stability and/or uniqueness of

the solution because both result from nonlinear interactions among the parameters.

I will follow the second approach in order to study, among other issues, whether an

MPE exists for more than a single combination of parameters, thus making the existence

and uniqueness result of more general interest. The drawback of this approach is that

the resulting conditions are only valid “asymptotically.” The nonlinear relations among

11 I should mention that under restrictive conditions, the OLE discussed in the previous section
coincides with the MPE, and thus, following the announced strategies will turn out to be the dynamically
optimal, time–consistent, equilibrium strategies. See for instance Reinganum (1982b). This is not the
case in the present model because the necessary conditions for the OLE are not independent of the state
variable c. Therefore, OLE will never coincide with the time–consistent MPE. See Fershtman (1987) as
well as Başar and Olsder (1995, §5.6).
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parameters characterized by the hyperbolas that define the equilibrium conditions are

replaced by their corresponding asymptotes, thus characterizing the equilibria through

sufficient conditions that depend explicitly on the parameters of the model.

In what follows, I describe how are the relevant parameters computed. I do not

characterize every single parameter of the model, but only those who drive its dynamic

features, i.e., , P̂c = φf
2 and τ̂c = φg

2 in equation (12).

5.1 Computing Linear Markov Perfect Equilibria

I now solve for MPE. Markov strategies are state dependent and therefore embody the idea

of a protection policy that is contingent on the industry’s performance. The equilibrium

is one of simultaneous moves of both players at each time and state.12 In equilibrium, the

government’s optimal tariff policy is the optimal dynamic best response to the monopolist’s

pricing strategy and vice versa. Let P ?(c) ∈ SF denote the monopolist’s Markov pricing

strategy out of the set of all possible state contingent pricing strategies SF . Similarly,

τ?(c) ∈ SG is the government’s Markov tariff strategy out of the set of all possible state

contingent tariff strategies. The MPE is a pair of strategies {P ?(c), τ?(c)} ∈ SF × SG

that maximizes each player’s value function for any state c given the equilibrium Markov

strategy of the other player. The value functions of this game for the monopolist and the

government are:

V F [c(s)] =

∞∫
s

π[P, τ , c(t)] e−rtdt, (19a)

V G[c(s)] =

∞∫
s

W [P, τ , c(t)] e−rtdt, (19b)

12 I do not consider the possible role of the government as Stackelberg leader, neither with total or
instantaneous pre–commitment as defined and studied by Cohen and Michel (1988). If the government
alone decides at the beginning of the game to set some course of action, i.e., the tariff schedule, regardless of
the actions of the other player, that is, ignoring any potential feedback from the actions of the other player,
then he is following an open–loop Stackelberg strategy that violates the Bellman principle of optimality,
and it is therefore time–inconsistent.
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where the marginal cost evolves according to equation (6). Starr and Ho (1969) show that

the following pair of Bellman equations provides with a set of necessary conditions for

MPE strategies:

rV F (c) = max
P∈SF

{
π(P, τ , c)−

(
∂X

∂P
+
∂X

∂τ

)
ċV F

}
, (20a)

rV G(c) = max
τ∈SG

{
W (P, τ , c)−

(
∂X

∂P
+
∂X

∂τ

)
ċV G

}
. (20b)

After some algebra the first order conditions for maximizing the terms between curly

brackets in (19) become (see Appendix):

0 = α− β[2P − c+ λ(β − γ)V F
c (c)] + γ(1 + τ), (21a)

0 = γ[P − c+ λ(β − γ)V G
c (c)]− τ. (21b)

Solving this system of first order conditions we can write the optimal strategies as reduced

form functions of the state c.13 The optimal state contingent price and tariff strategies

are:

P ?(c) = PN (c)− λ(γ − β)[βV F
c (c)− γ2V G

c (c)]
2β − γ2

, (22a)

τ?(c) = τN (c)− λβγ(γ − β)[V F
c (c)− 2V G

c (c)]
2β − γ2

. (22b)

Equations (22a) − (22b) reveal several interesting features of the MPE strategies.

First note that the MPE coincides with the SNE when λ = 0, i.e., there are no potential

cost reductions due to learning by doing and neither monopoly pricing or a protective tariff

can induce any dynamic effect whenever current production does not carry any investment

consideration. We thus need the existence of some dynamic economy of scale to derive

equilibrium strategies that differ from the static ones.

Second, MPE and SNE also coincide when β = γ, i.e., when the own and cross–price

effects are the same. But even in this case, the inequality β − γ2 > 0 must be fulfilled to

13 The solution to these Bellman equations is subgame perfect because they hold for any state c.
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ensure the concavity of the utility function of domestic consumers. Combining these two

conditions the equality of own and cross–price effects may hold for γ = β < 1. As β and γ

approach 1 the domestic and the imported good becomes almost perfect substitutes [Vives

(1999, §6.1)], and dynamic considerations are no longer valid because consumers can buy

an “identical” foreign product. In this case, the consumer surplus effect outweights any

potential future savings through reduction in the marginal cost. This means that the mere

future increase in domestic profits does not suffice to compensate the current reduction in

consumer surplus and that the infant–industry argument will not justify protection of the

domestic industry unless such protection also leads to the production of a differentiated

domestic variety.

Third, in addition to these effects, observe that, as before in the OLE, the optimal

MPE tariff also coincides with the SNE tariff when γ = 0, i.e., when domestic and foreign

products have independent demands.

Finally, notice that necessary conditions (21a)− (21b) are sufficient for a maximum

because the expressions in curly brackets in (20a)− (20b) are concave in {P, τ} as long as

the utility function of domestic consumers is concave, i.e., β − γ2 > 0.

Substitution of (22a) − (22b) into (20a) − (20b) produces a system of two partial

differential equations that is difficult to solve in general. However, since this is a linear–

quadratic differential game, it is reasonable to assume quadratic value functions in the

state in order to solve this problem:

V F (c) = ψf
0 + ψf

1 c+
ψf

2

2
c2, (23a)

V G(c) = ψg
0 + ψg

1c+
ψg

2

2
c2. (23b)

One way to proceed is to substitute the quadratic value functions into the Bellman

equations (20a) − (20b) and differentiate the expressions between curly brackets. The

resulting system of six nonlinear equations in the value function parameters has to be

satisfied for any state c. Fortunately this system is block–recursive. Only two nonlinear

equations determine {ψf
2 , ψ

g
2}. Once these parameters have been found, another two
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nonlinear equations determine {ψf
1 , ψ

g
1}. Finally, the remaining two equations determine

{ψf
0 , ψ

g
0}. Observe however that after substituting (23a) − (23b) into (20a) − (20b), the

quadratic specification for the value functions leads to Markov strategies (22a)−(22b) that

are linear in the state. Without loss of generality we can write these strategies as follows:14

P̂ (c) = φf
1 + φf

2c, (24a)

τ̂(c) = φg
1 + φg

2c. (24b)

Given the block–recursive system of nonlinear equations in the value function pa-

rameters, an alternative but equivalent approach is to solve the two coupled Riccati

equations associated to (24a) − (24b) and the optimality conditions (10) − (11). The

procedure is to substitute (24a) − (24b) in (12), as well as their derivatives P̂c = φf
2 and

τ̂c = φg
2. Assuming an stationary MPE, impose Ṗ = τ̇ = 0 and equate coefficients of the

intercept and slope of these strategies to obtain the following Riccati equations:A1

0

 =

 2β −γ

γ −1

 (r − λδ)φf
1

(r − λδ)φg
1

 + λ

φg
2 0

0 φf
2

 βγ −γ2

−2βγ β + γ2

φf
1

φg
1

, (25a)

A2β

A2γ

 =

 2β −γ

γ −1

 (r − λδ)φf
2

(r − λδ)φg
2

 + λ

φg
2 0

0 φf
2

 βγ −γ2

−2βγ β + γ2

φf
2

φg
2

, (25b)

where A1 = (α+ γ)(r − λδ + γλφg
2) and A2 = r − 2λδ. Riccati equations are independent

of c because MPE should hold for any realization of the state. Furthermore, observe

that {φf
1 , φ

g
1} can be found as a linear combination of the equilibrium values of {φf

2 , φ
g
2}.

Therefore, we can focus in solving the simpler system of nonlinear equations (25b), whose

parameters {φf
2 , φ

g
2} characterize the dynamic features of the equilibrium strategies.15

14 I show in the Appendix that parameters ψ’s can be written as a linear combination of parameters
φ’s. Since the Bellman equations are concave in {P, τ}, these linear Markov strategies lead to Bellman
equations that are also concave in c. Therefore, focusing on the linear first order conditions suffices to
characterize the maximizing strategies.

15 Riccati equations do not identify {ψf
0 , ψ

g
0} directly, i.e., the parameters related to the intercept of

the value function. I will ignore these parameters because they are not relevant for the stability perfection
of the equilibria discussed later in the paper. The quadratic value function approach is fully described in
Driskill and McCafferty (1989) and Reynolds (1987). Jun and Vives (1999, §4.2) discuss the equivalence
between the quadratic value function and the linear Markov strategy approach followed here.
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5.2 Stationary MPE

The existence of cross–products and quadratic terms in the Riccati equations opens the

possibility of multiple solutions. Actually, the Riccati equations are hyperbolas on {β, γ}

for any given set {r, λ d, α, c}. Figure 1 summarize the features of this equilibrium for a

well behaved set of parameters.16 Figure 1 shows the four intersections of the ‘Riccati

Hyperbolas.’ But instead of solving numerically the highly nonlinear equations in the

model’s parameters that characterize the couple of hyperbolas defined in (25b), I focus on

the asymptotes of these hyperbolas (also shown in Figure 1) to obtain some qualitative

results that can be easily linked to the parameters of the model. I first characterize the

stability of the MPE of this model. I then explore sufficient conditions for the existence of

a unique stable MPE.

Proposition 7: A pair of Markov strategies {P̂ (c), τ̂(c)} yields a stable marginal

cost trajectory whenever:

βφf
2 − γφg

2 + δ < 0. (26)

Proposition 8: If β >γ, and γ >β/[2(1 − β)], then ∃δ? such that ∀δ ≥ δ?, there

is a unique stable MPE.

While β−γ2 > 0 ensures the concavity of the utility function (1), the more restrictive

condition β−γ > 0 requires that own–price effects always exceed cross–price effects between

imports and domestic production. Thus, we exclude cases where domestic customers have

a strongly biased taste for foreign goods. The second condition requires that imports are

closer substitutes to domestic production the more elastic (larger β) is the demand for the

latter. Equations (13b), (17b), and (22b) have pointed out in different environments that

a tariff is not effective if imports and domestic products are independent. Proposition 8

requires that they are “close enough” substitutes so that establishing a tariff on imports

16 In particular α = 1; β = 0.4; γ = 0.35; λ = 0.7; δ = 0.13; and r = 0.05 so that the concavity,
β > γ2, and the OLE stability, r < λδ, conditions hold. These parameters also fulfill all the requirements
for a single stable MPE stated below in Proposition 8.
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induces a significant increase in demand that trigger marginal cost reductions for the

domestic monopolist.17

A major result that follows from Proposition 8 is that the Markov Perfect domestic

pricing and tariff of equation (24) are both decreasing with the state as P̂c =φf
2 <0 and τ̂c =

φg
2<0. This is exactly what we should expect from a model of learning. Tariff protection

initially shifts the demand in favor of domestic production. As learning takes place, the

domestic monopolist is able to offer these products at lower prices, and thus protection

does not need to remain as high as before, as the positive price effect compensates the

negative demand effect of a less protective policy. Thus, the time–consistent tariff policy

leads to future liberalization of trade. Notice that the parameters of the model determine

the steady state level of the marginal cost of the domestic monopolist. Whether this

liberalization is full or not depends exclusively on the relative magnitude of the marginal

costs of the domestic monopolist and that of foreign producers, which again is given by

the parameters of the model.

5.3 Results from Simulations

To complete the analysis I should compare the optimal MPE pricing and tariff strategies,

as well as of the level of marginal cost, at the steady–state relative to those of the OLE.

The infinite–horizon MPE of this model does not suffer from any weakness related to

the possibility of extension of the game beyond some given finite horizon . Equilibrium

strategies are dynamic best response to each other player’s and do not need of any external

source of commitment. Therefore, comparing these strategies to OLE strategies, we can

account for the effect of the lack of commitment of the domestic firm and the government

on their actual strategies.

17 Notice that both conditions will only be simultaneously satisfied if β < 0.5. It should be stressed
that these conditions limit the interactions of control and state variables in players’ payoff functions, as well
as those of the square of the opponent’s control on each player payoff functions. This can be easily shown
by analyzing cross–products in the instantaneous payoff functions associated to (7b) and (8b). Lockwood
(1996), has shown that these are sufficient conditions for uniqueness of linear infinite horizon MPE.
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To compare the steady–states of the MPE and the OLE, just assume Ṗ = τ̇ = 0

in equation (12). Obviously when P̂c → 0 and τ̂ → 0, MPE approaches OLE given by

equations (15a) − (15b). Unfortunately, as we have seen previously, P̂c = φf
2 and τ̂c = φg

2

are the solution to a set of nonlinear equations on the parameters of the model. This

requires computing the unique stable equilibria of Figure 1 several times to account for

the following results, that are therefore here only based in numerical simulations and

summarized in Figures 2–4.18

Figure 2 shows that P ? > P ◦. The lack of commitment ability makes the monopolist

to behave less aggressive in inducing cost reductions through learning by doing. Actually,

P ? also exceeds PN . Therefore, the monopolist will only price aggressively to induce

learning if she and the government are able to commit to a particular pricing–tariff

schedule. These differences in pricing strategies are more important the larger is β, i.e.,

the more elastic is the demand for the domestic product, but γ appears not to be any

definite effect. Figure 3 shows that τ? > τ◦, that is, the optimal MPE tariff strategy is

always more protective than in any of the other previously studied environments. Observe

that these differences are both increasing in β and γ. Finally, Figure 4 shows that the

stable MPE involves higher levels of marginal costs than in the OLE case, a relation that

is also increasing in β and γ.

6 Concluding Remarks

This paper presents a major general result and several characterizations of the pricing–tariff

dynamic equilibrium when the domestic monopolist reduces her marginal cost through

learning by doing and the government designs a tariff to maximize the discounted value

of total domestic welfare, thus accounting for future gains induced by current domestic

production decisions.

18 For the simulations, solutions are evaluated in a range of ±10% the value of β. Similarly, γ varies
between 10% and 90% of the range defined by the two conditions of Proposition 8 for each particular value
of β. Marginal cost c is assumed to be 3.5, a value slightly above the optimal Nash pricing of 3.375 for this
set of parameters. This is the interesting case because domestic production will not even start if prices do
not cover marginal costs.
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The major result is that contrary to many existing models in the trade literature,

the present paper shows that it is possible to characterize a time–consistent tariff pro-

tection policy that successfully help the domestic infant–industry become internationally

competitive. This is a key question in classical trade theory. The model shows that it is not

necessary any external source of commitment to avoid future deviations from this policy.

The existence of learning effects makes possible to find an equilibrium in Markov strategies

where the government’s tariff is the dynamic best response to the domestic monopolist’s

pricing decisions and vice versa. Two modeling choices, also absent in the existing literature

dealing with time consistency of tariff protection policies, are critical to show this dynamic

optimality result: the use of truly state contingent strategies, and solving the infinite

horizon version of the game to explicitly avoid the possibility of extending the game beyond

any initial finite horizon. Furthermore, the analysis of the stability of equilibria shows that

MPE leads to future liberalization of trade.

The existence of learning by doing could induce overproduction relative to the

static equilibrium, thus maximizing the total discounted profits by lowering the marginal

cost. However, this result only holds when both the monopolist and the government can

commit to a particular schedule of pricing and tariff decisions. To circumvent the lack of

commitment of OLE strategies, I characterize the infinite–horizon linear MPE strategies.

Since neither the monopolist or the government are able to commit to a specific schedule

of actions, the resulting dynamic equilibrium is more damaging for consumers: both the

domestic prices and tariffs are higher, although marginal costs reach levels lower than in

the OLE case when domestic and imported production are close substitutes. Thus, even

with higher domestic prices, the monopolist overproduces because the higher tariff shifts

demand significantly from imports to domestic goods.

The model also shows that in the absence of depreciation of experience, the solution

of the dynamic OLE mimics the static one, and thus infant–industry tariff protection fails

to reduce marginal cost of domestic firms. Similarly, if the domestic and imported good are

considered independent, the dynamic OLE and the static equilibrium strategies coincide

and infant–industry arguments will also fail.
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Finally, something must be said about potential policy implementations of this

model. Instead of considering uncertain learning effects, as in Dinopoulos, Lewis, and

Sappington (1995), the model assumes perfect information regarding all parameters of the

model, including the learning equation. It could be argued that such demanding informa-

tional requirement makes the application of the model impractical. In addition, and despite

the tedious and complex computations needed to characterize the equilibrium, results are

contingent on the specific linear–quadratic structure of this model. While recognizing that

both assertions carry some truth, I should emphasize that linear–quadratic differential

games are commonly interpreted as a first approximation to MPEs of more complex

differential games, for whom closed–form solutions are impractical [Reinganum (1982a,

§1)]. Furthermore, the linear MPE analized in this paper is robust to zero–mean additive

shocks in the learning equation (6) [Vives (1999, §9.2.3)], thus making the informational

requirement argument a less striking criticism.

References
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Appendix 1

• Demand System

In order to reduce the number of parameters of the model, the specification of demand
normalizes some of them. From equation (3), the demand for domestic and imported
products are:

X(P, τ) =
(axbm − amk)− bmP + k(1 + τ)

bxbm − k2
, (A.1)

M(P, τ) =
(ambx − axk) + kP − bx(1 + τ)

bxbm − k2
. (A.2)

Therefore, to obtain the direct demand function system (4a)− (4b) we need:

α = [axbm − amk]/∆ = axβ − amγ, (A.3a)

β = bm/∆, (A.3b)

γ = k/∆, (A.3c)

1 = bx/∆, (A.3d)

1 = [ambx − axk]/∆ = am − axγ. (A.3e)

In addition, the following inequality will be used extensively:

1
∆

= β − γ2 > 0. (A.4)

Finally, from (A.3a), (A.3e), and (A.4) we have:

ax =
α+ γ

β − γ2
and am =

αγ + β

β − γ2
. (A.5)

• Welfare Function

Equation (8b) presents the government’s welfare function in terms of the parameter of the
direct demand system. We thus have to make use of the relationships among parameters of
the direct and inverse demand systems described above. The three elements of the welfare
function are:

CS(P̃ ) = (ax − P )X(P, τ) + (am − 1− τ)M(P, τ)

− 1
2

[
bxX(P, τ)2 + bmM(P, τ)2 + 2kX(P, τ)M(P, τ)

]
, (A.6a)

π(P, τ , c) = (P − c)X(P, τ), (A.6b)

R(P, τ) = τM(P, τ). (A.6c)
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Adding these three terms we get:

W (P, τ , c)=(ax−c)X(P, τ)+(am−1)M(P, τ)−bxX(P, τ)2+bmM(P, τ)2+2kX(P, τ)M(P, τ)
2

.

(A.7)
Equation (8b) substitutes (4a)− (4b) and (A.3)− (A.5) into (A.7).

• Stationary OLE

After making P̂c = τ̂c = 0 in equation (12) we have: (α+ γ)(r − λδ) + (r − 2λδ)βc

(r − 2λδ)γc

 =

 2β −γ

γ −1

 (r − λδ)P − Ṗ

(r − λδ)τ − τ̇

. (A.8)

The stationary OLE is found by making Ṗ = 0 and τ̇ = 0. Then, P ◦ and τ◦ can be easily
computed from (A.8) using Cramer’s Rule. Thus, rewriting (A.8) we have: (r − λδ)P ◦

(r − λδ)τ◦

 = −

 1 0

0 1

 Ṗ
τ̇

 +

 (r − λδ) 0

0 (r − λδ)

P
τ

. (A.9)

Focusing on the homogeneous part of this dynamic system, the Routh–Hurwitz stability
condition requires that [Beavis and Dobbs (1990 §5.4)]:

TR

 (r − λδ) 0

0 (r − λδ)

 = 2(r − λδ) < 0, (A.10a)

and: ∣∣∣∣∣∣
(r − λδ) 0

0 (r − λδ)

∣∣∣∣∣∣ = (r − λδ)2 > 0, (A.10b)

from which follows that the stationary OLE is globally stable if r < λδ. Finally, the level
of marginal cost at the stationary OLE is found making ċ = 0 in equation (6) so that:

δc = (α+ γ)− βP + γτ. (A.11)

The value of c◦ in equation (18) is found after substituting the OLE strategies (15a)−(15b)
in (A.11). The marginal cost in the SNE, cN , is c0 when λ = 0. The difference between
these two stationary equilibrium levels for the state variable of the game is:

c◦ − cN =
λδ(α+ γ)β3

(r − λδ)(2β − γ2)2δ2 + (r − 2λδ)β4 + (2r − 3λδ)(2β − γ2)δβ2
< 0, (A.12)

because for any stable equilibria r < λδ.
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• Bellman Equations

To obtain the first order conditions (21a)−(21b) we need to substitute demand production
and imports (4a)− (4b) and the marginal cost motion equation (6) into the profit (A.6b)
and welfare function (A.7) respectively. Bellman equations can then be written as follows:

rV F (c) = max
P∈SF

{ [
P − c− λ(γ − β)V F

c (c)
]
[α− βP + γ(1 + τ)] + λδcV F

c (c)
}
, (A.13a)

rV G(c) = max
τ∈SG

{[
α+ γ

β − γ2
− c− λ(γ − β)V G

c (c)
]

[α− βP + γ(1 + τ)]

+ γ
α+ γ

β − γ2
[γP − τ ] + λδcV G

c (c)− [α− βP + γ(1 + τ)]2

2(β − γ2)

− β[γP − τ ]2

2(β − γ2)
− γ[α− βP + γ(1 + τ)][γP − τ ]

β − γ2

}
. (A.13b)

To characterize the equivalence between parameters ψ’s and φ’s, first differentiate
(23a)− (23b) to obtain:

V F
c (c) = ψf

1 + ψf
2 c, (A.14a)

V G
c (c) = ψg

1 + ψg
2c. (A.14b)

After substituting these expressions and (13a)− (13b) in (22a)− (22b) we get the following
two system of linear equations defined on the intercepts and slope of the linear Markov
strategies respectively:

(2β − γ2)φf
1 = (α+ γ) + λ(γ − β)[βψf

1 − γ2ψg
1 ], (A.15a)

(2β − γ2)φg
1 = γ(α+ γ) + λβγ(γ − β)[ψf

1 − 2ψg
1 ], (A.15b)

(2β − γ2)φf
2 = (β − γ2) + λ(γ − β)[βψf

2 − γ2ψg
2 ], (A.15c)

(2β − γ2)φg
2 = −βγ + λβγ(γ − β)[ψf

2 − 2ψg
2 ]. (A.15d)

Solving these two systems of linear equations leads to the following equivalence relations:

λβγ(β − γ)ψf
1 = γ(α+ γ)− 2βγφf

1 + γ2φg
1, (A.16a)

λβγ(β − γ)ψg
1 = −βγφf

1 + βφg
1, (A.16b)

λβγ(β − γ)ψf
2 = βγ − 2βγφf

2 + γ2φg
2, (A.16c)

λβγ(β − γ)ψg
2 = βγ − βγφf

2 + βφg
2. (A.16d)
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• Riccati Equations

Substitute the proposed linear strategies (24a) − (24b) and its derivatives into (12). A
stationary MPE requires Ṗ = τ̇ = 0 so that: (α+ γ)(r − λδ + γλφg

2) + (r − 2λδ)βc

(r − 2λδ)γc

 =

 2β −γ

γ −1

 (r − λδ)(φf
1 + φf

2c)

(r − λδ)(φg
1 + φg

2c)



+

φg
2 0

0 φf
c

 βγ −γ2

−2βγ β + γ2

λ(φf
1 + φf

2c)

λ(φg
1 + φg

2c)

. (A.17)

Riccati equations (25a) − (25b) are derived from here by equating the elements on c and
those of the independent terms. Finally, observe that because of the block–recursive
structure of these Riccati equations, once we know {φf

2 , φ
g
2} we can find {φf

1 , φ
g
1} through

a linear combination implicitly defined in (25a): (α+γ)(r−λδ+γλφg
2)

0

=

 2β(r−λδ)+λβγφg
2 −γ(r−λδ)−λγ2φg

2

γ(r−λδ)−2λβγφf
2 −(r−λδ)+λ(β+γ2)φf

2

φf
1

φg
1

. (A.18)

Each one of these Riccati equations is a particular case of the general quadratic form
representation of conic sections. In particular they correspond to a hyperbola [McLenaghan
and Levy (1996, §4.7.2); Miravete (2001, Appendix)]. The center of the first Riccati
hyperbola is:

φ̂f
2 = −3(r − λδ)

λβ
> 0, and φ̂g

2 = −2(r − λδ)
λγ

> 0. (A.19a)

Similarly, for the second Riccati hyperbola we have:

φ̂f
2 =

r − λδ

λ(β + γ2)
< 0, and φ̂g

2 =
γ(3β − γ2)(r − λδ)

λ(β + γ2)2
< 0. (A.19b)

The slopes of the asymptotes of these Riccati equations are [Miravete (2001, Appendix)]:

S11 =
γ −

√
β2 + γ2

(β + γ) +
√
β2 + γ2

< 0, and S12 =
γ −

√
β2 + γ2

(β − γ)−
√
β2 + γ2

≥ 0, (A.20a)

S21 = 0, and S22 =

√
(β + γ)2

(β + γ)2 + 4β2γ2
< 1. (A.20b)

• Stability of Stationary MPE

Condition (26) follows from substituting equation (24) into equation (6) to obtain:

ċ = −λ
[
α+ γ − βφf

1 + γφg
1

]
+ λ

[
βφf

2 − γφg
2 + δ

]
c. (A.21)
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• Uniqueness of Stable MPE

1. Equation (A.19a) defines the center of the hyperbola corresponding to the first Riccati
equation. This center always belong to the first quadrant in the φf

2× φg
2 space.

2. Equation (A.19b) defines the center of the hyperbola corresponding to the second
Riccati equation. This center always belong to the third quadrant in the φf

2× φg
2 space.

3. Proposition 8 ensures that the slope of the stability condition is bounded from below:
β/γ < 1.

4. Positive slopes of asymptotes are such that S12<S22. Thus we have:

S−1
12 =

(β − γ)−
√
β2 + γ2

γ −
√
β2 + γ2

= 1− β − 2γ√
β2 + γ2 − γ

> 1− β − 2γ
β

, (A.22a)

S−1
22 =

√
1 +

(
2βγ
β + γ

)2

< 1 +
2βγ
β + γ

< 1 +
2βγ
β
. (A.22b)

Thus, for S−1
12 > S−1

22 it is sufficient that −(β−2γ)>2βγ. This is equivalent to condition
γ>β/[2(1−β)] assumed in Proposition 8.

5. The major consequence of this last step is that the intersection between upward slopping
asymptote of the first Riccati hyperbola and the flat asymptote of the second holds to the
left of the center of the latter (A.19b). This ensures the existence of a solution such that
P̂ ?

c = φf
2 < 0 and τ̂?

c = φg
2 < 0. But furthermore, it defines two non–overlapping convex

cones with vertex at (A.19b) –cone 1–, and (P̂ ?
c , τ̂

?
c ), –cone 2–, respectively. Assumptions

of Proposition 8 ensure that (P̂ ?
c , τ̂

?
c ) is the unique stable equilibrium:

5.1 Consider the vertex (A.19b) and the non–overlapping cones mentioned before.
According to the Minkowski’s separation theorem, there must exist a hyperplane, that
passing through vertex (A.19b), separates the non–overlapping convex cones [Takayama
(1985, §0.B3)]. The stability condition defined in equation (26) is this separating hyper-
plane. Step 3 shows that its slope is larger than 1. This hyperplane is the dashed line in
Figure 1.

5.2 The slope of the upward slopping asymptote of the second Riccati hyperbola
is smaller than 1 according to (A.20b). Thus, all three solutions in cone 1 are indeed
non–stable as they fall below the hyperplane of the stability condition. Similarly, the
intersection of the third quadrant, such as P̂ ?

c =φf
2 < 0 and τ̂?

c =φg
2 < 0, defines necessarily

the unique stable solution.

5.3 The value of δ? is found as the intersection of the stability condition with the
vertical axis when this separating hyperplane passes through (A.19b). Thus:

δ? =
r

1− γ(β + γ2)
. (A.23)
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