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Abstract

In this paper we try to give a solution to the aggregation problem on working
with I–O Tables. First of all we verify the similarity degree among the
production functions of industries which aggregate in each sector. Second,
once we have established the aggregation by using different cluster analysis,
we set a bundle of conditions to choose the proper linkage method. That
allow us to characterize the way of aggregation (weighted or non–weighted)
of the I–O Table. JEL: C67.
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1 Introduction

Aggregation in I-O Tables has to be done on the scope of the microeconomic foundations
of macroeconomic analysis. This point is controversial and there are not convincing
arguments which let us to keep a “golden rule.” This is the logical consequence of dealing
with so a difficult and complicated a subject; therefore the controversy is still open. The
usual way to carry on aggregation is just to consolidate industries into sectors. There are
some reasons that support that kind of aggregation based on the manageability of the
data. The only justification we find to this point of view is the necessity of working with
empirical data, but it has no theoretical interest or justification.

Related with the topic just mentioned there is another problem: the optimal size
of an I–O Table, because depending on the degree of aggregation we can miss important
information, on the other hand if the degree is quite low we can be violating homogeneity
hypothesis. In Leontief’s model, it is assumed the existence of productions functions with
constant returns defined on an undetermined number of goods. These two characteristics
are known as homogeneity and stability hypothesis and they are not completely compatible.
This fact is due to the model aggregation degree: in this model the stability hypothesis is
related with the fixed coefficients of the production functions of the industries, which ensure
us the existence of constant returns. In order to keep the stability hypothesis we must
aggregate industries into an adequate number of sectors (not too big), because if we have
a table with a lot of industries each one producing only one homogeneous good, we can’t
assume, when the prices change, that all cross–elasticities are going to be zero, because
with such a big amount of goods it has to be easy to find out substitutes among them.
In order to keep stability hypothesis (i.e. fixed coefficients) we must aggregate industries,
and this is the opposite effect required by the homogeneity hypothesis, because the bigger
the aggregation degree is the greater is the set of heterogeneous goods encompassed in a
sector. Hence it is almost impossible both hypothesis to be proved simultaneously.

Microfoundation problems are not treated in the above discussion, the only point
it deals with is the coherence scope of a production function with fixed coefficients in
an aggregated economy. Notwithstanding that problem wouldn’t exist if industries would
keep a fixed proportion among them in each sector, or the sectors grouping them would
reflect their characteristics, that is the sectors would have the same production functions
as the industries. Hatanaka (1952), Ara (1959) and Malinvaud (1954) papers studied that
question setting the conditions to be accomplished by industries productions functions
in order that, when they were aggregated into sectors, technic coefficients defined on
sectors, were not affected for variations in the final demand vector. This is just known as
Hatanaka’s condition, and we express it as [Kossov (1972)]: TA = A ∗ T , where A is the
original coefficient matrix (on industries) and A∗ is the aggregated coefficient matrix (on
sectors). T is the aggregation matrix which can be unweighted (elements are 1 or 0) or
weighted [Morimoto (1971)]. The economic meaning of this condition is absolutely clear.
To aggregate industries it is necessary that they have homogeneous inputs structure, that
is, a similar cost functions for each industry aggregated in a single sector. That is the
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way to achieve the relationship between sectors (macroeconomic categories) and industries
(microeconomic categories).

This analysis belongs to the class of exact aggregation models. The assumptions
that this frame implies lead us to one of the two following points: either the aggregation
is the correct one or it can’t be done according to the designed T matrix. If Hatanaka’s
condition doesn’t hold, the only solution is to redefine sectors in order to find a new
aggregation matrix with no bias, that is, the technical coefficients of the aggregated model
don’t change when demand vector does. As it is a necessity to work with aggregated
tables, methods of non-exact aggregation are developed. These methods don’t need any
requirements on the coefficient matrix but need a certain structure or behavior on the
demand vector. We want to remark Theil’s (1957) work who establish the conditions
for zero first order bias, which implies to group industries into almost input-homogeneous
sectors. There are other methods that try to minimize bias, [see a brief survey in Kymn and
Norsworthy (1976)] but most of them, as those already mentioned, take the aggregation
scheme as granted [Fisher (1962) and Neudecker (1970)]. The main feature of cluster
analysis is to group industries into sectors depending on the degree of similarity on its cost
functions characteristics. This method of aggregation generates endogenously the different
sectors which industries group.

2 Cluster Analysis

Cluster analysis is used to classify data by clustering them, based on its similarities and/or
disparities. These data are usually individuals, but in our case, we are dealing with
industries’ cost functions. The main difference of this framework in relation with the
other multivariate analysis techniques is that the latter need previous grouping in order to
classify individuals, while the former groups the data endogenously. Fisher’s (1969) is one
of the first to approach the problem. Now we try to find out the best grouping method:
in order to get that, we apply different kinds of cluster analysis. We develop some simple
conditions which allow us to verify the best method to aggregate using an autoregressive
model on the distances found with the several clusters applied according to the linkage
chosen. We apply these conditions to an Input–Output Table of the Spanish Economy.

The way the different clusters are set up depends on which similarity or disparity
criteria are applied, on the algorithms we use and on the optimization procedure chosen.
Putting together all the mentioned characteristics we can classify each kind of cluster.

It is necessary to use a measure of distance to quantify the divergence among
individuals (cost functions in this paper). Well known distances are Euclidean, Euclidean
normalized, Tchebycheff’s metric, Mahalanobis’, and Tonimoto’s. So far as we are con-
cerned, we choose Euclidean distance because it is easy to work it out and also the simplest.
Particularly, it exhibits some very interesting properties for our goal; first, it is not invariant
to scale change and second, it depends on the relationships among the variables. When
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measuring the distances among clusters we consider the whole set of variables included in
each cost functions. Once we have studied the distance among individuals we must work
out the distance between group–individual (clustered sectors and industries) and among
groups. To achieve that aim we have different criteria.

When doing a multivariate data analysis, we try to classify individuals by theirs
characteristics. Cluster analysis allow us to group industries as if they were individuals to
set different sectors. We use hierarchical cluster, that is, a subset of clustering techniques,
because this particular kind of cluster let us to work without imposing any restriction
about which industries are going to be in each cluster and besides to keep all the industries’
characteristics. The most remarkable feature of hierarchical cluster is the fact that each
group integrates only in one upper order cluster according to its scale dissimilarities; the
greatest the degree of aggregation is, the greatest is the dissimilarity among groups. When
that process ends up, there will be solely a cluster grouping all the individuals.

Each hierarchical cluster has a representation which is called dendogram that shows
how clusters group (see Fig. 1) and also a similarity measure for each level. This sort of
cluster works out the grouping in a very simple way because it starts forming so many
clusters as individuals and choosing a similarity measure, as strategy, groups the most
similar clusters. Once this first stage is accomplished it computes the gravity center of
each new cluster and runs it again. Once we have established the technique and distance
to use, we must choose what linkage method has to be applied, because the results are
not independent of the linkage used. Linkage refers to how to measure distances among
clusters’ gravity center.

Depending on the linkage carried out, cluster analysis will have the combinatority
and compatibility properties [Sneath and Sokal, 1973]. When we speak about combinatority
and compatibility properties, we refer to the following conditions:

1. Combinatority (C.1): Let d2
ik be the distance between clusters (i) and (k). If those

are the ones which have the smallest distance, they achieve a new cluster (ik), with
size ni + nk (the summation of individuals in each group). The next step is to
cluster a new group (ikh) with the previous clusters (ik) and (h), which exhibited
the minimum distance (greater similarity). If d2

(ik)h can be computed just with d2
ik,

d2
ih, d2

kh, then this linkage posses the above mentioned property. In the particular
case we are studying (Euclidean distance), this condition can be expressed as:

d2
(ik)h = αid

2
ih + αkd2

kh + βd2
ik + τ | d2

ih − d2
kh |, (1)

where αi, αk, β and τ are the parameters to be found according to the linkage used.

2. Compatibility (C.2): This property holds when in equation (1) τ = 0, and:

αi + αk + β = 1. (2)

This property means that distances among different patterns have the same char-
acteristics, i.e., distances became bigger in a uniform way according to the degree
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of aggregation. This implies that all the distances have the same dimensionality, so
they can be studied in a single model [see Escudero (1977)].

Depending on the parameters values we can compare heuristically different linkages
when using Euclidean distance, as can be seen en Table 1. When using cluster analysis,
different linkage methods are used but usually, reasons for choosing among them are not
provided. Examining Fig. 1 we can check dendograms which cluster the same groups in
very different ways according to the linkage chosen. These dendograms posses one or both
of the mentioned properties. This characteristic is the one which makes the selection of
the linkage to use not a trivial point, because in input–output tables there are industries
absolutely different, so they can’t be integrated in the same group at any cluster stage. In
our analysis, the aggregation of industries in input–output tables, we want the cluster to
satisfy just the property of combinatority but not the compatibility condition otherwise at
every stage of the cluster, one or more industries would be clustered in the same group.
This means that, even when the initial industries are different, they will be grouped in
a single sector, hence the whole economy would be explained for the same model, i.e., a
unique cost function or production function. Working that way, a perfect homogeneous
aggregation would be achieved, which is obviously not compatible with the multi–sectoral
analysis of input–output tables.

Hence, we select linkage methods with economic sense. In our analysis we want
the cluster to satisfy the above–mentioned properties (combinatority and no compatibil-
ity); there are three different linkages which have those properties: Centroid (unweighted
pair group centroid), Median (weighted pair group centroid), and the Ward method [see
Anderberg (1973)].

3 Testing
Since we have already set up the correct way to cluster, at a second stage we test the
performance of the technique chosen. To carry out that test we estimate an autoregressive
model with constant coefficients. The model we estimate is based in equation (1), which
is referred to as an N − 1 level of aggregation. The same combinatority condition for level
N can be expressed as:

d2
(ikh)j = αikd2(ik)j + αhd2

hj + βd2
(ik)h + τ | d2

(ik)j − d2
hj | . (3)

Using parametric strategies common to these linkages on equations (1) and (3) we establish:

τ = 0, (4.a)

−αikαh = −αiαk = β < 0. (4.b)

For the Ward Method, condition (4.b) only holds when N →∞. Hence, if we use the test
in this particular case, results will be asymptotically equivalent to those achieved with the
other two methods. Then:

d2
(ikh)j − d2

(ik)h = αikd2
(ik)j + αhd2

hj − αid
2
ih − αkd2

kh + β | d2
(ik)h − d2

ik | . (5)
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Setting YN as the distance in the aggregation level N and using equations (4.a) − (4.b),
we can specify equation (5) as:

YN − YN−1 = δ + β[YN−1 − YN−2]. (6)

Since the hierarchical distances are not variance stationary, equation (6) must be expressed
in logarithms:

log(YN )− log(YN−1) = δ + β[log(YN−1)− log(YN−2)] + µ, µ ∼ N(0, σ2). (7)

The usual way to choose linkage in literature has no rational justification [Blin and Cohen
(1977)]. The conditions we present allow us to discriminate in some cases on the linkage
to use. We have three possible situations:

a) If we get a positive β value in one of the applied method, this implies this specific
linkage cannot be use properly.

b) If estimated values of β are negatives then Centroid and Ward Method can be
applied, but Median Method requires β to be equal to −1/4.

c) If estimated values of β allow us to use more than one method, then we propose
employing an information criteria to discriminate between them.

We apply the proposed test to an input–output Table of the Spanish 1985 Economy
integrated by 56 sectors [see Appendix 1]. We carried out six hierarchical cluster analysis
(using Euclidean distance) on the Leontief Inverse Matrix and on the technical coefficient
matrix. The use of the Leontief Inverse Matrix (see Blin and Cohen, 1977) is justified for
two main reasons. First of all it shows the direct and indirect inputs that each industry
needs, and secondly it defines the production function at vertically integrated sector level.
The applied linkages were Centroid, Median and Ward. In Appendix 2 we show the
different cluster distances in each degree of aggregation. To choose the proper method, we
estimate equation (7) for the six computed dissimilarity measures [see Appendix 2].1

Looking at the achieved results [Table 2], we can establish the only proper method
to apply in that particular case is the median on the Leontief’s inverse matrix. We work
on the aggregation according to the linkage proposed and clustering sectors as it’s shown
in the dendogram in Appendix 3.

At first we work on the data using APL language. The distances and the dendogram
are obtained with the SPSS/PC+ and the estimation of the autoregressive model has been
achieved with the microTSP V.5.0. In Appendix 3 we can see how the dendogram performs
the aggregation.

To begin with, industries named with numbers 2 and 4, and 5 and 6 are aggregated.
Industries 2 and 4 represent respectively Coal and Coke; and 5 and 6 are Crude Oil and

1 In Appendix 2, we show the distances obtained according to the method we applied. The columns
noted with ? mean that we are measuring them on the Leontief’s inverse matrix. Names without that
symbol are referred to as the coefficient matrix.
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Fuel Oil. At a second stage a great number of industries are aggregated. The aggregation
is carried out on well–defined sectors, e.g., there are a number of industries which can be
classified as Services (Public and Private), another groups can be viewed as Industries of
Energy, Transports and Communications, Metals and Machinery and Non-Metals Minerals
Industries, but the cluster cannot distinguish among them. At a third level the dendogram
shows an aggregation of some related industries such as Paper, Paper goods, and Tobacco.
At higher aggregation levels the similarity among industries became smaller, and basically
it includes Manufacturing Industries.

4 Concluding Remarks
This kind of analysis let us to use an aggregation pattern to consolidate the industries of
the input–output table of the Spanish economy in 1985 into sectors. This is an important
tool to minimize aggregation bias, and, with the technique we have shown in this paper,
we can discriminate which linkage gives the best cluster aggregation. The one with this
characteristic is the Median, which gives no importance to the number of industries of
each sector to be cluster. Therefore we conclude that the best aggregation method is the
unweighted one.

– 6 –



References
Andergerg, M.R (1973): Cluster Analysis for Applications. Academic Press, London.
Ara, K. (1959): “The Aggregation Problem in Input–Output Analysis.” Econometrica, 27,

257–262.
Blin, J.M. and C. Cohen (1977): “Technological Similarity and Aggregation in Input-

Output Systems: A Cluster–Analytic Approach.” The Review of Economics and
Statistics, 59, 82–91.

Escudero, L.F. (1977): Reconocimiento de Patrones. Paraninfo.
Fisher, W.D. (1962): “Optimal Aggregation in Multi–Equation Prediction Models.” Econo-

metrica, 30, 744–769.
Fisher, W.D. (1969): Clustering and Aggregation in Economics. Johns Hopkins Press.
Hatanaka, M. (1952): “Note on Consolidation within a Leontief System.” Econometrica,

20, 301–303.
Kossov, V. (1972): “The Theory of Aggregation in Input–Output Models,” in Carter,

A.P. and A. Brody (eds.): Contributions to Input–Output Analysis. North–Holland
Publishing.

Kymn, K.O. and J.R. Norsworthy (1976): “A Review of Industry Aggregation in Input–
Output Models.” The American Economist, Spring, 5–10.

Malinvaud, E. (1954): “Aggregation Problems in Input–Output Models,” in Barna, T.
(ed.): The Structural Interdependence of the Economy. John Wiley and Sons.

Morimoto, Y. (1971): “A Note on Weighted Aggregation in Input–Output Analysis.”
International Economic Review, 12, 138–143.

Neudecker, H. (1970): “Aggregation in Input–Output Analysis: An Extension of Fisher’s
Method.” Econometrica, 38, 921–926.

Sneath, P.H.A. and R.R. Sokal (1973): Numerical Taxonomy. W.H. Freeman Press.
Theil, H. (1957): “Linear Aggregation in Input–Output Analysis.” Econometrica, 25, 111–

122.

– 7 –












